
Inf. Process. Lett. 186 (2024) 106492

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

Branching bisimulation semantics for quantum processes

Hao Wu a, Qizhe Yang b,∗, Huan Long a

a BASICS, Shanghai Jiao Tong University, China
b Shanghai Normal University, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Formal semantics

Quantum process algebra

Branching bisimulation

Verification

The qCCS model proposed by Feng et al. provides a powerful framework to describe and reason about quantum
communication systems that could be entangled with the environment. However, they only studied weak
bisimulation semantics. In this paper we propose a new branching bisimilarity for qCCS and show that it is
a congruence. The new bisimilarity is based on the concept of 𝜖-tree and preserves the branching structure of
concurrent processes where both quantum and classical components are allowed. Furthermore, we present a
polynomial time equivalence checking algorithm for the ground version of our branching bisimilarity.
1. Introduction

Quantum computers have been proven capable of achieving expo-

nential speed-up for certain classical computational problems, which is
known as quantum supremacy [9]. With rapid development of quan-

tum hardware, such as IBM’s unveiling the 433-qubit Osprey processor
in 2022 and more recently Google’s 70-qubit Sycamore processor, the
research of quantum information has garnered increasing interest. How-

ever, the laws of quantum mechanics, such as the no-cloning of quan-

tum information [26], present profound challenges to almost all fields
of computer science, including quantum programming language, quan-

tum model checking etc. One well-known example is the verification of
the correctness and safety of quantum communication protocols. The
classical theories, methods, and technologies are not directly applicable
to quantum systems.

Fortunately, over the years researchers have proposed many pow-

erful frameworks for describing and verifying properties of classical
concurrent communication systems. Process algebra has been especially
successful in building rigorous mathematical languages and techniques
for formally modeling classical concurrent systems. As a continuing of
such success, various quantum process algebras have been proposed for
formal analysis of quantum systems and verification of quantum com-

munication protocols. One of the most fundamental theoretical research
problems in quantum process algebra is to find a suitable quantum gen-

eralization of the notion of bisimulation in classical process algebra. In
practical terms, an equally significant question arises concerning the ef-

ficient verification of bisimulation in quantum systems. Generally what
we would desire is a full-fledged quantum process algebra equipped

* Corresponding author.

with proper behavioral equivalence on quantum processes that can be
verified efficiently. In this paper we propose quantum branching bisimula-

tion for the quantum CCS model, which abstracts from internal activity
while at the same time preserves the branching structure of quan-

tum processes in a strong sense. Congruence property and equivalence
checking algorithm for quantum branching bisimulation are also given.

1.1. Related work

In this part we discuss some related work that we view as most rele-

vant to ours, especially from both bisimulation relation and verification
algorithm aspects. We then give a brief introduction on our new quan-

tum branching bisimulation.

Jorrand and Lalire [16] defined a language QPAlg (Quantum Process
Algebra) by extending a CCS-like process algebra with several quantum
primitives in 2004. Later a branching bisimilarity that preserves the
branching structure of process graphs was defined in [17]. However,
this bisimilarity is not a congruence as it is not preserved by the paral-

lel composition operator. Additionally, their setting does not consider
the state change of quantum systems caused by quantum operations.
Here quantum operations formalize the possible transformations that
a quantum system may undergo, including unitary transformations and
quantum measurements [21]. Gay and Nagarajan [12] defined a lan-

guage CQP (Communicating Quantum Processes), which is obtained
from the 𝜋-calculus [19,20] by adding primitives for unitary transfor-

mations and quantum measurements. They established a type system to
ensure the legality of ownership of qubits. A full probabilistic branch-

ing bisimulation for CQP was proposed by Davidson [3] and shown
Available online 16 March 2024
0020-0190/© 2024 Elsevier B.V. All rights reserved.

E-mail addresses: wuhao_seiee@sjtu.edu.cn (H. Wu), qzyang@shnu.edu.cn (Q. Ya

https://doi.org/10.1016/j.ipl.2024.106492

Received 28 September 2023; Received in revised form 8 March 2024; Accepted 8 M
ng), longhuan@sjtu.edu.cn (H. Long).

arch 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:wuhao_seiee@sjtu.edu.cn
mailto:qzyang@shnu.edu.cn
mailto:longhuan@sjtu.edu.cn
https://doi.org/10.1016/j.ipl.2024.106492
https://doi.org/10.1016/j.ipl.2024.106492
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2024.106492&domain=pdf

H. Wu, Q. Yang and H. Long

to be a congruence. However, neither QPAlg nor CQP can effectively
describe the entangled communication in quantum systems, where en-

tangled communication refers to the phenomenon that two participant
quantum systems in a communication process may share a pair of qubits
in the entangled state.

To overcome this problem, Feng et al. [7] then proposed a lan-

guage named quantum CCS (i.e., qCCS) for quantum concurrent systems.
The language qCCS is the quantum extension of classical value-passing
CCS [14,15]. By carefully designing the semantics of quantum-input
(quantum-output resp.), qCCS provides a general framework to describe
quantum communication systems which could be entangled with the
environment. They also studied bisimulation for finite quantum pro-

cesses and proved a limited congruence property for the bisimilarity, in
which some constraints are put on the participating processes when the
parallel composition operator is involved. Later in [28] the same au-

thors studied a purely quantum version of qCCS in which no classical
data is explicitly involved. They established the strong bisimulation se-

mantics for such a model and showed that the induced bisimilarity is
a congruence with respect to the parallel composition operator. In [8],
the authors introduce a new notion of weak probabilistic bisimilarity
for the general qCCS model where both classical and quantum data are
involved. They also prove that it is preserved by all process operators,
including parallel composition and recursive definitions. The bisimi-

larity in [8] distinguishes quantum-input from other actions, and to
match a quantum-input, the application of super-operator on evolving
processes should be considered. Such requirement is somewhat com-

plicated and unnatural. Then Deng and Feng in [5] proposed an open
bisimulation for quantum processes, in which the bisimulation condi-

tion and the closure under super-operator application are made to be
two separated requirements. They further showed that the induced open
bisimilarity is a congruence relation and has a modal characterization.
Later in [6], Feng et al. propose the symbolic bisimulation for qCCS and
show its coincidence with the open bisimulation in [5] when strong
bisimulation is considered.

Apart from the discussion about proper equivalence relations for
quantum processes, efficient equivalence checking algorithm is of great
importance in practice. Given two quantum processes 𝑃 and 𝑆 , equiv-

alence checking decides whether 𝑃 and 𝑆 are related by the selected
equivalence relation. For quantum models, Qin et al. have investigated
the equivalence checking problem for the ground (weak) bisimilarity
[22]. Inspired by [24], they reduce the problem of finding a matching
weak transition to a linear programming problem that can be solved in
polynomial time and give a polynomial time algorithm for the equiva-

lence checking problem. In [29], Zhang et al. gives a polynomial time
equivalence checking algorithm for the branching bisimilarity in RCCS
model by exploiting the classical split-refinement method.

As we have just shown, most of the previous bisimulations proposed
for qCCS model are either strong (weak resp.) bisimulation or not con-

gruent. They are not exactly what we will need in practice. On the
one hand, strong bisimulation requires that every internal action must
be bisimulated for bisimilar processes. Such requirement is usually too
strict to practical use. On the other hand, weak bisimulation ignores
all internal actions and only requires that each external actions should
be matched. It turns out that weak bisimulation does not preserve the
branching structure of a process, i.e., two weak bisimilar processes may
go through non-bisimilar intermediate states. Such deficiency can cause
many problems in practical applications and analysis [13,10]. As an ex-

ample, consider two quantum programs 𝑃1 and 𝑃2 which are supposed
to implement some quantum protocol specification (formalized as pro-

cess 𝑆). To say that 𝑃𝑖 (𝑖 ∈ {1, 2}) implements 𝑆 correctly, 𝑃𝑖 should
simulate every state of 𝑆 precisely without introducing any unwanted
states as by-product. In classical concurrent systems, one such proper
relation is the famous branching bisimilarity [25]. In [1], Basten then
proved that the branching bisimilarity is indeed an equivalence. When
it comes to the probabilistic setting, Castiglioni et al. [2] proposed
2

a probabilistic branching bisimilarity for divergence-free probabilistic
Information Processing Letters 186 (2024) 106492

processes and showed that it is an equivalence. Compared with strong
(weak resp.) bisimulation, branching bisimulation ignores redundant
simulation of deterministic steps while still preserving the branching
structure of the considered processes. Thus branching bisimulation is
often more suitable for being chosen as the criteria for evaluating equiv-

alence between specifications and implementations. Such difference is
crucial for compositional concurrent processes as the environment can
interact with intermediate processes freely. It is then natural to study
quantum branching bisimulation. In our opinion, one possible obstacle
for the lack of such work in the past could be that most of the previ-

ous quantum bisimulation are based on the conception of probabilistic
bisimulation proposed by Segala et al. [23], where they use the notion
of probability distribution on states to characterize probabilistic tran-

sition. This strategy becomes highly involved if one tries to directly
extend it to branching bisimulation. Recently, a branching bisimilar-

ity equivalence [11] has been defined for randomized process models
based on the concept of 𝜖-tree and has been shown to be a congruence
relation, which makes the study of quantum branching bisimulation fea-

sible. In this paper, we extend the general approach to qCCS model in
combination with the notion of open bisimulation. We propose a novel
quantum branching bisimulation. Then follow the methodology in [29],
we also give an efficient equivalence checking algorithm for it.

In short, in this paper we focus on solving two fundamental prob-

lems for quantum system verification. We first establish a new equiva-

lence with good algebraic property, and then give an efficient equiva-

lence checking algorithm for it.

1.2. Contribution

The main contributions of this paper are twofold.

1. We propose a new branching bisimulation for the full qCCS model,
which is proved to be a congruence relation. In particular, we use
the 𝜖-tree technique which is model-independent.

2. We present a polynomial time equivalence checking algorithm for
the ground branching bisimilarity.

1.3. Organization

The structure of the paper is as follows. Section 2 recalls the syntax
and semantics of qCCS model. Section 3 introduces our branching bisim-

ilarity for qCCS and shows that it is a congruence relation. Section 4

gives the polynomial equivalence checking algorithm for the ground
branching bisimilarity. Section 5 includes some concluding remarks.

2. Quantum CCS

In this paper, we will mainly follow the quantum CCS model pro-

posed by Feng et al. in [8], with one exception that we only allow
guarded nondeterministic choice rather than general summation, which
is necessary for the congruence result. In qCCS, we use 𝖱𝖾𝖺𝗅 to de-

note the set of real-valued classical data and 𝖰𝖻𝗍 to denote the set of
quantum data (qubits). Accordingly, we assume two countable sets of
variables: cVar for the set of classical variables, ranged over by 𝑥, 𝑦, ⋯,
and qVar for the set of quantum variables, ranged over by 𝑞, 𝑟, ⋯. The
set of real-valued expressions is denoted by Exp, ranged over by 𝑒.
We also assume two types of channels in qCCS: cChan for classical
channels, ranged over by 𝑐, 𝑑, ⋯, and qChan for quantum channels,
ranged over by 𝑐, 𝑑, ⋯. Then the set of all channels is denoted as
Chan = cChan ∪ qChan. A relabeling function 𝑓 is an injective function
on Chan with 𝑓 (cChan) ⊆ cChan and 𝑓 (qChan) ⊆ qChan. A set of dis-

tinct quantum variables {𝑞1, ⋯ , 𝑞𝑛} is often abbreviate as 𝑞, when the
number 𝑛 is unimportant or clear from the context.
Now we present the syntax of qCCS.

Information Processing Letters 186 (2024) 106492H. Wu, Q. Yang and H. Long

Fig. 1. Operational semantics of qCCS.
Definition 2.1 (Quantum process [8]). The set of qCCS processes qProc
and the free quantum variable function 𝑞𝑣 ∶ qProc → 2qVar are defined
inductively by the following rules:

(1) nil ∈ qProc, and 𝑞𝑣(nil) = ∅;

(2) 𝖠(𝑞) ∈ qProc, and 𝑞𝑣(𝖠(𝑞)) = 𝑞;
(3) 𝜏.𝑃 ∈ qProc, and 𝑞𝑣(𝜏.𝑃) = 𝑞𝑣(𝑃);
(4) 𝑐?𝑥.𝑃 ∈ qProc, and 𝑞𝑣(𝑐?𝑥.𝑃) = 𝑞𝑣(𝑃);
(5) 𝑐!𝑒.𝑃 ∈ qProc, and 𝑞𝑣(𝑐!𝑒.𝑃) = 𝑞𝑣(𝑃);
(6) 𝑐?𝑞.𝑃 ∈ qProc, and 𝑞𝑣(𝑐?𝑞.𝑃) = 𝑞𝑣(𝑃) − {𝑞};

(7) If 𝑞 ∉ 𝑞𝑣(𝑃) then 𝑐!𝑞.𝑃 ∈ qProc, and 𝑞𝑣(𝑐!𝑞.𝑃) = 𝑞𝑣(𝑃) ∪ {𝑞};

(8) 𝑈 [𝑞].𝑃 ∈ qProc, and 𝑞𝑣(𝑈 [𝑞].𝑃) = 𝑞𝑣(𝑃) ∪ 𝑞;
(9) 𝑀[𝑞; 𝑥].𝑃 ∈ qProc, and 𝑞𝑣(𝑀[𝑞; 𝑥].𝑃) = 𝑞𝑣(𝑃) ∪ 𝑞;

(10)
∑
𝑖∈𝐼 𝜆𝑖.𝑃𝑖 ∈ qProc, and 𝑞𝑣(𝜏.𝑃) =

⋃
𝑖∈𝐼 𝑞𝑣(𝜆𝑖.𝑃𝑖);

(11) If 𝑞𝑣(𝑃) ∩ 𝑞𝑣(𝑄) = ∅ then 𝑃 ∥𝑄 ∈ qProc, and 𝑞𝑣(𝑃 ∥𝑄) = 𝑞𝑣(𝑃) ∪
𝑞𝑣(𝑄);

(12) 𝑃 [𝑓] ∈ qProc, and 𝑞𝑣(𝑃 [𝑓]) = 𝑞𝑣(𝑃);
(13) 𝑃∖𝐿 ∈ qProc, and 𝑞𝑣(𝑃∖𝐿) = 𝑞𝑣(𝑃);
(14) if 𝑏 then 𝑃 ∈ qProc, and 𝑞𝑣(if 𝑏 then 𝑃) = 𝑞𝑣(𝑃),

where 𝑃 , 𝑄 ∈ qProc, 𝜆𝑖 ∈ {𝜏, 𝑐?𝑥, 𝑐!𝑒, 𝑐?𝑞, 𝑐!𝑞, 𝑈 [𝑞], 𝑀[𝑞; 𝑥]}, 𝑓 is a re-

labeling function, 𝐿 ⊆ Chan, and 𝑏 is a boolean expression.

Most constructors are standard as in the classical CCS [18]. We only
briefly explain some new constructors in quantum scenario: 𝑐?𝑞 (𝑐!𝑞
resp.) stands for the action of quantum-input (quantum-output resp.)
a qubit via quantum channel 𝑐; 𝑈 [𝑞] denotes the action of applying
a trace-preserving super-operator [8] 𝑈 on the qubits 𝑞; 𝑀[𝑞; 𝑥] denote
the action of performing the measurement on qubits 𝑞 according to
the observable 𝑀 , where the classical variable 𝑥 is used to store the
measurement result; 𝖠(𝑞) is a process constant defined by the equa-

tion 𝖠(𝑞)
def
= 𝑃 , where 𝑃 ∈ qProc with 𝑞𝑣(𝑃) ⊆ 𝑞. The notion of free and

bound classical variables has their usual meanings as in classical CCS.
Only note that the variable 𝑥 appears in quantum measurement oper-

ator 𝑀[𝑞; 𝑥] is bound. Given a qCCS process 𝑃 , if it contains no free
classical variable (i.e., 𝑓𝑣(𝑃) = ∅), then we call it a closed quantum pro-

cess.

Here we introduce some unitary operators that we will use later.
3

The Hadamard operator 𝐻 is a single-qubit operation that maps the
basis state |0⟩ to |0⟩+|1⟩√
2

and |1⟩ to |0⟩−|1⟩√
2

. The four Pauli operators 𝜎0,

𝜎1, 𝜎2 and 𝜎3 form a basis for the real vector space of 2 × 2 Hermitian
matrices. Under the computational basis, these operators can be defined
as follows:

𝐻 = 1√
2

(
1 1
1 −1

)
, 𝜎0 =

(
1 0
0 1

)
,

𝜎1 =
(
0 1
1 0

)
, 𝜎2 =

(
1 0
0 −1

)
, 𝜎3 =

(
0 −𝑖
𝑖 0

)
.

Note that all unitary transformations are trace-preserving super-

operators [8], including the Hadamard operator and the Pauli oper-

ators.

A few more notations are necessary for presenting the operational
semantics of qCCS. Given any quantum variable 𝑞 ∈ qVar, its associating
2-dimensional Hilbert space is denoted by 𝑞 . Given a nonempty subset
𝑆 ⊆ qVar, we use 𝑆 to denote the tensor product space

⨂
𝑞∈𝑆 𝑞 and

use
𝑆

to denote the space
⨂

𝑞∉𝑆 𝑞 . The state space of a system that
contains all quantum variables is then denoted as =

⨂
𝑞∈qVar 𝑞 .

Given a closed quantum process 𝑃 and a density operator 𝜌 on the
Hilbert space 𝑆 (where 𝑆 is a finite set with 𝑞𝑣(𝑃) ⊆ 𝑆), we call the
pair ⟨𝑃 , 𝜌⟩ a configuration. Let Con be the set of all configurations,
ranged over by 𝐴, 𝐵, 𝐶, ⋯. Given an equivalence on Con, we use
Con∕ to denote the set of equivalence classes of Con under . We
will write 𝐴 𝐵 for (𝐴, 𝐵) ∈ , and use [𝐴] to represent the equiva-

lence class containing 𝐴. The set of nondeterministic actions 𝐴𝑐𝑡𝑛 takes
the following form:

{𝜏} ∪ {𝑐?𝑣, 𝑐!𝑣 ||| 𝑐 ∈ cChan, 𝑣 ∈ 𝖱𝖾𝖺𝗅}

∪ {𝑐?𝑟, 𝑐!𝑟 ||| 𝑐 ∈ qChan, 𝑟 ∈ qVar}.

The set of probabilistic actions is 𝐴𝑐𝑡𝑝 = {𝑝𝜏 ||| 0 < 𝑝 < 1}. Then the set
of all possible actions is 𝐴𝑐𝑡 =𝐴𝑐𝑡𝑛 ∪𝐴𝑐𝑡𝑝. We write 𝓁 for elements of
𝐴𝑐𝑡.

The operational semantics of qCCS is given in Fig. 1, where 𝓁 ∈𝐴𝑐𝑡.
Here the semantics of quantum measurement is given as a collection of
(probabilistic) silent transitions, which helps establish the congruence
result in the following sections.

Most of the rules in Fig. 1 are straightforward. We only explain the

measurement rule (i.e., Meas). It characterizes that, after measurement

H. Wu, Q. Yang and H. Long

the configuration will evolve into different configurations with corre-

sponding probabilities depending on different measurement outcomes.
Notice that similar to [7], the rule for unitary transformation (i.e.,

Oper) and measurement on quantum systems (i.e., Meas) are consid-

ered as (probabilistic) silent actions performed by the quantum systems.
One can refer to [7] for more explanations.

3. Branching bisimulation between quantum processes

As mentioned earlier, [8] proposes the strong and weak bisimu-

lation for qCCS as tools to capture the idea that a quantum process
approximately implements its specification. However as in real spec-

ification, such approximation is essentially branching bisimulation as
there will be no silent actions in specification. As a matter of fact, in
concurrency society, branching bisimulation is generally regarded as
the finest practical equivalence [25] of the whole linear time-branching
time spectrum. It is then natural to build the branching bisimulation for
qCCS and study its algebraic properties. In this section, we will propose
a branching bisimilarity for qCCS model and then prove its congruence
property.

3.1. Quantum branching bisimulation

In Fig. 1 we have introduced probabilistic silent transitions for quan-

tum measurement as the rule of Meas. Thus to build branching bisimu-

lation for qCCS, we can take the techniques in [11] and then facilitate
the relating argument. We start with the definition of 𝜖-tree in [11],
which is a convenient technical gadget for our work.

Definition 3.1 (𝜖-tree [11]). Let be an equivalence on Con and 𝐴 ∈
Con be a configuration. An 𝜖-tree 𝑡𝐴

of 𝐴 with regard to is a labeled

tree such that the following statements hold.

• Each node of 𝑡𝐴

is labeled by an element of Con and each edge is
labeled by an element of (0, 1]. The root of 𝑡𝐴

is labeled by 𝐴.

• All the labels of the nodes of 𝑡𝐴

are in [𝐴] .

• If a node labeled 𝐵 has only one child 𝐵′, then the edge from 𝐵 to
𝐵′ is labeled 1 and 𝐵

𝜏
←←←←←←→𝐵′.

• If a node labeled 𝐵 has 𝑘 children 𝐵1, ⋯ , 𝐵𝑘 and each edge from
𝐵 to 𝐵𝑖 is labeled 𝑝𝑖, then {𝑝𝑖}𝑖∈[𝑘] is a probability distribution and

𝐵

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]𝐵𝑖.

Here 𝐵
∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]𝐵𝑖 is the collective silent transition defined

in [11], which means that 𝐵 can perform a silent transition to {𝐵𝑖}𝑖∈[𝑘]
with corresponding probability {𝑝𝑖}𝑖∈[𝑘]. Intuitively, 𝜖-tree is a general-

ization of the classical state-preserving internal action sequence. For a
better understanding of 𝜖-tree, consider the following example.

Example 3.2. To the process:

𝖠(𝑞)
def
= 𝑀[𝑞;𝑥].if 𝑥 = 0 then 𝐻[𝑞].𝑐!0.𝐧𝐢𝐥

else 𝐻[𝑞].𝜎2[𝑞].𝐴(𝑞).

Consider any density operator 𝜌 ∈ ({𝑞}). Let 𝜌0 = [|0⟩]𝑞 ⊗ 𝜌, 𝜌1 =

[|1⟩]𝑞 ⊗ 𝜌, 𝜌2 =
[|0⟩−|1⟩√

2

]
𝑞

⊗ 𝜌, and 𝜌3 =
[|0⟩+|1⟩√

2

]
𝑞

⊗ 𝜌. Here we use

the symbol [Ψ]𝑞 to emphasize that the given state Ψ is actually asso-

ciated with the quantum variable 𝑞. Then consider any equivalence
satisfying that [⟨𝖠(𝑞), 𝜌3⟩] = [⟨𝐻[𝑞].𝑐!0.𝐧𝐢𝐥, 𝜌0⟩] = [⟨𝑐!0.𝐧𝐢𝐥, 𝜌3⟩] =
[⟨𝐻[𝑞].𝜎2[𝑞].𝖠(𝑞), 𝜌1⟩] = [⟨𝜎2[𝑞].𝖠(𝑞), 𝜌2⟩] . The infinite 𝜖-tree of ⟨𝖠(𝑞), 𝜌3⟩ is given in Fig. 2.

A branch 𝜋 in an 𝜖-tree is either a finite path from the root to a
4

leaf or an infinite path from the root. For a finite branch 𝜋, we write
Information Processing Letters 186 (2024) 106492

⟨𝖠(𝑞), 𝜌3⟩
⟨𝐻[𝑞].𝑐!0.𝐧𝐢𝐥, 𝜌0⟩ ⟨𝐻[𝑞].𝜎2[𝑞].𝖠(𝑞), 𝜌1⟩

⟨𝑐!0.𝐧𝐢𝐥, 𝜌3⟩ ⟨𝜎2[𝑞].𝖠(𝑞), 𝜌2⟩

⟨𝖠(𝑞), 𝜌3⟩

1∕2

1

1∕2

1

1

Fig. 2. The 𝜖-tree for ⟨𝖠(𝑞), 𝜌3⟩.
|𝜋| for its length and use 𝜋(𝑖) to denote the label of its 𝑖-th edge. The
probability 𝖯(𝜋) of a finite branch 𝜋 is then defined as

∏
𝑖≤|𝜋| 𝜋(𝑖). The

convergence probability 𝖯𝑐(𝑡𝐴

) is defined as follows, which is intuitively

the probability of the portion of finite branches in 𝑡𝐴

.

𝖯𝑐(𝑡𝐴

)

def
= lim

𝑘→∞
(
∑

{𝖯(𝜋) ∣ 𝜋 is a finite branch in 𝑡𝐴

such that |𝜋| ≤ 𝑘}).
An 𝜖-tree 𝑡𝐴

is regular if 𝖯𝑐(𝑡𝐴

) = 1.

Based on the 𝜖-tree, two types of transitions are introduced in
Definition 3.3 (Definition 3.4 resp.), which are used to character-

ize state-changing non-probabilistic actions (probabilistic actions resp.)
that should be bisimulated explicitly.

Definition 3.3 (𝓁-transition [11]). Suppose ∈ Con∕ and ¬(𝓁 = 𝜏 ∧
 = [𝐴]). We say there is an 𝓁-transition from 𝐴 to with regard

to , written 𝐴 ⇝

𝓁
←←←←←←←→ , if there exists a regular 𝜖-tree 𝑡𝐴

such that,

𝐿
𝓁
←←←←←←←→𝐿′ ∈ for every leaf 𝐿 of 𝑡𝐴

.

Intuitively, 𝓁-transition is a generalization of the transition ⇒

𝓁
←←←←←←←→

in the classical CCS model, where the state-preserving internal action

sequence ⇒ is replaced by a regular 𝜖-tree, and the action
𝓁
←←←←←←←→ is either

an external action or a state-changing internal action.

We still need to formalize the simulation of probabilistic actions.

Suppose 𝐿
∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘] 𝐿𝑖 and some 𝐿𝑖 falls into an equivalence

class ≠ [𝐿] . Define

𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
def
=

∑
𝑖∈[𝑘]

{
𝑝𝑖 ∣𝐿

𝑝𝑖𝜏
←←←←←←←←←←←←←→𝐿𝑖 ∈

}
.

The normalized probability is defined as the conditional probability of
leaving [𝐿] to , i.e.,

𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
def
= 𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
∕
(
1 − 𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [𝐿]
))

.

Intuitively, normalized probability characterizes the conditional proba-

bility of transferring into a new equivalent class with respect to equiv-

alence via one step of probabilistic silent actions (i.e., the collective
silent transition). Next we promote this conception to 𝜖-tree by consid-

ering every leaf and then get the so-called 𝑝-transition.

Definition 3.4 (𝑝-transition [11]). Suppose ∈ Con∕ and ≠ [𝐴] .

We say there is a 𝑝-transition from 𝐴 to with regard to , written

H. Wu, Q. Yang and H. Long

𝐴 ⇝

𝑝
←←←←←←→, if there exists a regular 𝜖-tree 𝑡𝐴

satisfying that 𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐
𝑖∈[𝑘]𝐿𝑖 and the normalized probability 𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
= 𝑝 for

every leaf 𝐿 of 𝑡𝐴

.

Intuitively, 𝑝-transition is the counterpart of 𝓁-transition for proba-

bilistic actions, which requires that after going through a regular 𝜖-tree,
every evolved configuration can arrive at a new equivalence class with
the same normalized probability 𝑝.

Suppose ⟨𝑃 , 𝜌⟩ is a configuration, the partial trace of 𝜌 with respect
to 𝑞𝑣(𝑃) can be defined as tr𝑞𝑣(𝑃)(𝜌), which is exactly the reduced quan-

tum state of 𝜌 on the environment of system 𝑃 . Now we first define the
ground branching bisimulation and bisimilarity for qCCS.

Definition 3.5 (Ground branching bisimulation). An equivalence relation
 ⊆ Con × Con is called a ground branching bisimulation if for any ⟨𝑃 , 𝜌⟩, ⟨𝑄, 𝜎⟩ ∈ Con, ⟨𝑃 , 𝜌⟩ ⟨𝑄, 𝜎⟩ implies that

1. 𝑞𝑣(𝑃) = 𝑞𝑣(𝑄), tr𝑞𝑣(𝑃)(𝜌) = tr𝑞𝑣(𝑄)(𝜎);

2. If ⟨𝑃 , 𝜌⟩ ⇝

𝓁
←←←←←←←→ ∈ Con∕ such that ¬(𝓁 = 𝜏 ∧ = [⟨𝑃 , 𝜌⟩]), then ⟨𝑄, 𝜎⟩ ⇝

𝓁
←←←←←←←→ ;

3. If ⟨𝑃 , 𝜌⟩ ⇝

𝑝
←←←←←←→ ∈Con∕ such that ≠[⟨𝑃 , 𝜌⟩], then ⟨𝑄, 𝜎⟩ ⇝

𝑝
←←←←←←→

.

The largest ground branching bisimulation, which is guaranteed to exist
using standard arguments [8], is called ground branching bisimilarity and
is denoted by ≃𝑔𝑏.

In the above definition, the term ground is used to emphasize that we
do not consider super-operator application when matching a quantum
input action. In contrast, the weak bisimilarity proposed in [8] separates
quantum input from other actions and considers the effects of super-

operators in quantum input clause.

Following [4], we are then ready to introduce the notion of closeness
under super-operator application.

Definition 3.6 ([4]). An relation ⊆ Con × Con is closed under super-

operator application if ⟨𝑃 , 𝜌⟩ ⟨𝑄, 𝜎⟩ implies that ⟨𝑃 , 𝑈 (𝜌)⟩ ⟨𝑄,
𝑈 (𝜎)⟩ for any super-operator 𝑈 acting on

𝑞𝑣(𝑃), where
𝑞𝑣(𝑃) stands

for the tensor product space
⨂

𝑞∉𝑞𝑣(𝑃)𝑞 .

Now we can formalize branching bisimulation in the quantum sce-

nario.

Definition 3.7 (Branching bisimulation). An equivalence relation ⊆
Con × Con is called a branching bisimulation if it satisfies that

1. is a ground branching bisimulation;

2. is closed under all super-operator application.

Then two quantum configurations ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜎⟩ are called branch-

ing bisimilar, denoted by ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩, if there exists a branching
bisimulation satisfying that ⟨𝑃 , 𝜌⟩ ⟨𝑄, 𝜎⟩.

We can also lift the branching bisimulation relation from configura-

tions to processes. Note in Definition 3.8 we reuse the ≃ notation as its
meaning should be clear from the context.

Definition 3.8. Two quantum processes 𝑃 and 𝑄 are branching bisim-

ilar, denoted as 𝑃 ≃𝑄, if for any quantum state 𝜌 and any indexed set 𝑣
of classical values, ⟨𝑃 {𝑣∕𝑥}, 𝜌⟩ ≃ ⟨𝑄{𝑣∕𝑥}, 𝜌⟩. Here 𝑥 is the set of free
5

classical variables contained in 𝑃 and 𝑄.
Information Processing Letters 186 (2024) 106492

We give two examples for further explanations about the new equiv-

alence relations. Example 3.9 briefly compare our new branching bisim-

ulation and the ones in the literature. Example 3.10 shows how to model
classical quantum algorithm by ≃.

Example 3.9. Let 𝑈 = 𝜎1𝐻 . Suppose 𝑃 =𝐻[𝑞].𝐧𝐢𝐥+𝑈 [𝑞].𝐧𝐢𝐥+𝑀0,1[𝑞;

𝑥].𝐧𝐢𝐥 and 𝑄 =𝐻[𝑞].𝐧𝐢𝐥 + 𝑈 [𝑞].𝐧𝐢𝐥. Let 𝜌 =
[|0⟩+|1⟩√

2

]
𝑞

⊗ 𝜌′, where 𝜌′ ∈

({𝑞}).

• According to [7], ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜌⟩ are weak bisimilar. Particularly, ⟨𝑄, 𝜌⟩ can simulate the action 𝑀0,1[𝑞; 𝑥] of ⟨𝑃 , 𝜌⟩ by choosing its
actions 𝐻[𝑞] and 𝑈 [𝑞] with respective probabilities one half.

• According to the probabilistic branching bisimulation given in
[17], configurations ⟨𝐧𝐢𝐥, [0]𝑞 ⊗𝜌′⟩ and ⟨𝐧𝐢𝐥, [1]𝑞 ⊗𝜌′⟩ are regarded
as equal, which then implies that ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜌⟩ are bisimilar
as well. Yet their equivalence holds by a completely different rea-

son: state changes of contexts caused by quantum operations are
ignored there.

• In our framework, ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜌⟩ are not branching bisimilar to

each other. Particularly, the 𝑝-transition ⟨𝑃 , 𝜌⟩ ⇝≃
1∕2
←←←←←←←←←←←←←←→ [⟨𝐧𝐢𝐥, [0]𝑞 ⊗

𝜌′⟩]≃ cannot be simulated by ⟨𝑄, 𝜌⟩. It should be noted that, among
these three equivalences, our branching bisimilarity is the only one
that can both preserve the branching structures of the evolving
configurations and keep track of changes of quantum states.

Example 3.10. Given a black box function (an oracle) 𝑂 which delivers
the result of the transformation 𝑂 |𝑥⟩ |𝑞⟩ = |𝑥⟩ |𝑞 ⊕ 𝑓 (𝑥)⟩, where 𝑓 (𝑥) =
0 for all 0 ≤ 𝑥 < 2𝑛 except a unique 𝑥0, for which 𝑓 (𝑥0) = 1. Let |𝜑⟩ be
the equal superposition state 1

2𝑛−1
∑2𝑛−1
𝑥=0 |𝑥⟩. Grover’s algorithm [21] can

output 𝑥0 with probability (1) in only (
√
2𝑛) steps. Therefore by

repeating Grover’s algorithm a constant number of times we can find
𝑥0 with probability 1. This procedure can be described by the following
qCCS-process.

𝐺𝑆 = 𝐻⊗𝑛[𝑞1,⋯ , 𝑞𝑛].𝜎1[𝑞].𝐻[𝑞].{𝐺𝐼[𝑞1,⋯ , 𝑞𝑛, 𝑞]}𝑅.

𝑀[𝑞1,⋯ , 𝑞𝑛;𝑥].𝑆𝑒𝑡0[𝑞1,⋯ , 𝑞𝑛, 𝑞].

if 𝑓 (𝑥) = 1 then 𝑑!𝑥.𝐧𝐢𝐥 else 𝐺𝑆

where 𝐺𝐼 = (2 |𝜑⟩ ⟨𝜑| − 𝐼)𝑂 is the Grover iteration operator and
𝑅 ≈ ⌈𝜋√2𝑛∕4⌉ is the Grover iteration repeating times. Let 𝜌 =
[|0⟩⊗𝑛]𝑞1 ,⋯,𝑞𝑛 ⊗ [|0⟩]𝑞 ⊗ 𝜌′, where 𝜌′ ∈ ({𝑞1 ,⋯,𝑞𝑛,𝑞}

). Then there

exists an 𝜖-tree for configuration ⟨𝐺𝑆, 𝜌⟩ such that ⟨𝐺𝑆, 𝜌⟩ ⇝≃
𝑑!𝑥0
←←←←←←←←←←←←←←←←←←→

[⟨𝐧𝐢𝐥, 𝜌⟩]≃.

3.2. Congruence property

Congruence is one of the most desired properties for a relation, es-

pecially for compositional systems. In this section, we will show that
the branching bisimulation proposed in Section 3.1 is indeed a congru-

ence. The congruence proof follows a similar strategy as in [11] and
[27]. However, branching bisimilarity in the quantum setting has addi-

tional requirements, including equal partial trace and closeness under
super-operator application, thereby making establishing such a congru-

ence result much more complicated. We start by showing that ≃ is an
equivalence relation.

Theorem 3.11. ≃ is an equivalence and it is the largest branching bisimu-

lation on Con.

Proof. Suppose {𝑖}𝑖∈𝐼 is a collection of branching bisimulation on ⋃

Con, we can show that the equivalence closure of 𝑖∈𝐼 𝑖 is also a

H. Wu, Q. Yang and H. Long

branching bisimulation. The proof is similar to the one of Proposition
4.2 in [11]. □

We then proceed to show that the bisimilarity ≃ for configurations
is preserved by all static constructors.

Lemma 3.12. If ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩ then

(1) ⟨𝑃 ∥𝑅, 𝜌⟩ ≃ ⟨𝑄 ∥𝑅, 𝜎⟩;
(2) ⟨𝑃 [𝑓], 𝜌⟩ ≃ ⟨𝑄[𝑓], 𝜎⟩;
(3) ⟨𝑃∖𝐿, 𝜌⟩ ≃ ⟨𝑄∖𝐿, 𝜎⟩;
(4) ⟨if 𝑏 then 𝑃 , 𝜌⟩ ≃ ⟨if 𝑏 then 𝑄, 𝜎⟩.
Proof. We only give the detail of item (1) as an example, as the other
cases are simpler or easier.

Let
def
= {(⟨𝑃 ∥𝑅, 𝜌⟩, ⟨𝑄 ∥𝑅, 𝜎⟩) ∣ ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩}} and

def
= (∪ ≈

)∗. It will be enough to show that is a branching bisimulation.
Suppose ⟨𝑃 ∥ 𝑅, 𝜌⟩ ⟨𝑄 ∥ 𝑅, 𝜎⟩ where ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩. By the def-

inition of ≃ we have 𝑞𝑣(𝑃) = 𝑞𝑣(𝑄) and tr𝑞𝑣(𝑃)(𝜌) = tr𝑞𝑣(𝑄)(𝜎). Thus
𝑞𝑣(𝑃 ∥𝑅) = 𝑞𝑣(𝑄 ∥𝑅) and tr𝑞𝑣(𝑃∥𝑅)(𝜌) = tr𝑞𝑣(𝑄∥𝑅)(𝜎) hold.

According to Definition 3.7, we also have ⟨𝑃 , 𝑈 (𝜌)⟩ ≃ ⟨𝑄, 𝑈 (𝜎)⟩
for any super-operator 𝑈 acting on

𝑞𝑣(𝑃), which implies that ⟨𝑃 ∥
𝑅, 𝑈 (𝜌)⟩ ⟨𝑄 ∥ 𝑅, 𝑈 (𝜎)⟩ for any super-operator 𝑈 acting on

𝑞𝑣(𝑃).
Hence is closed under super-operator application. According to Theo-

rem 3.11, we have ≃ is closed under super-operator application, thus
is also closed under super-operator application. Then we show that
is a ground branching bisimulation. According to Definition 3.5, it boils
down to showing that whenever ⟨𝑃 ∥𝑅, 𝜌⟩ ⟨𝑄 ∥𝑅, 𝜎⟩, the following
two requirements hold:

i. If ⟨𝑃 ∥ 𝑅, 𝜌⟩ ⇝

𝓁
←←←←←←←→ ∈ Con∕ and ¬(𝓁 = 𝜏 ∧ = [⟨𝑃 ∥ 𝑅, 𝜌⟩]),

then ⟨𝑄 ∥𝑅, 𝜎⟩ ⇝

𝓁
←←←←←←←→ ;

ii. If ⟨𝑃 ∥ 𝑅, 𝜌⟩ ⇝

𝑝
←←←←←←→ ∈ Con∕ such that ≠ [⟨𝑃 ∥ 𝑅, 𝜌⟩], then ⟨𝑄 ∥𝑅, 𝜎⟩ ⇝

𝑝
←←←←←←→ .

Below we only give detailed proof for the first statement. Proof for the
second one is similar and hence omitted here.

Consider an 𝓁-transition ⟨𝑃 ∥𝑅, 𝜌⟩ ⇝

𝓁
←←←←←←←→ . It consists of a regular

𝜖-tree 𝑡⟨𝑃∥𝑅,𝜌⟩ of ⟨𝑃 ∥ 𝑅, 𝜌⟩ with regard to and, for every leaf 𝐿 of

𝑡⟨𝑃∥𝑅,𝜌⟩, a transition 𝐿
𝓁
←←←←←←←→𝐿′ ∈ . We will construct an 𝓁-transition ⟨𝑄 ∥

𝑅, 𝜌⟩ ⇝

𝓁
←←←←←←←→ by induction on the structure of 𝑡⟨𝑃∥𝑅,𝜌⟩. It is carried out

by a careful case analysis about the immediate transitions that ⟨𝑃 ∥
𝑅, 𝜌⟩ can perform.

• The root of 𝑡⟨𝑃∥𝑅,𝜌⟩ can perform the internal transition
𝜏
←←←←←←→. Three

subcases are possible.

i. This transition is caused by solely, that is, ⟨𝑅, 𝜌⟩ 𝜏←←←←←←→⟨𝑅′, 𝑈 ′(𝜌)⟩ and ⟨𝑃 ∥ 𝑅, 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ∥ 𝑅′, 𝑈 ′(𝜌)⟩ for some 𝑅′ and
super-operator 𝑈 ′. Then ⟨𝑄 ∥ 𝑅, 𝜎⟩ 𝜏←←←←←←→ ⟨𝑄 ∥ 𝑅′, 𝑈 ′(𝜎)⟩. As ≃ is
closed under super-operator application, we have ⟨𝑃 , 𝑈 ′(𝜌)⟩ ≃⟨𝑄, 𝑈 ′(𝜎)⟩, which follows that ⟨𝑃 ∥𝑅′, 𝑈 ′(𝜌)⟩ ⟨𝑄 ∥𝑅′, 𝑈 ′(𝜎)⟩.

ii. This transition is caused by 𝑃 solely, that is, ⟨𝑃 , 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ′, 𝜌′⟩
and ⟨𝑃 ∥ 𝑅, 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ′ ∥ 𝑅, 𝜌′⟩ for some 𝑃 ′ and 𝜌′. If ⟨𝑃 ′, 𝜌′⟩ ≃⟨𝑃 , 𝜌⟩, then ⟨𝑃 ′ ∥ 𝑅, 𝜌′⟩ ⟨𝑄 ∥ 𝑅, 𝜎⟩. If ⟨𝑃 ′, 𝜌′⟩ ≄ ⟨𝑃 , 𝜌⟩, then ⟨𝑄, 𝜎⟩ ⇝≃

𝜏
←←←←←←→ [⟨𝑃 ′, 𝜌′⟩]≃. For every leaf ⟨𝑄′′, 𝜎′′⟩ in the regu-

lar 𝜖-tree of ⟨𝑄, 𝜎⟩, there exists a configuration ⟨𝑄′, 𝜎′⟩ such
that ⟨𝑄′′, 𝜎′′⟩ 𝜏←←←←←←→ ⟨𝑄′, 𝜎′⟩ ∈ [⟨𝑃 ′, 𝜌′⟩]≃. We then have ⟨𝑄′′ ∥
𝑅, 𝜎′′⟩ ⟨𝑄 ∥𝑅, 𝜎⟩ ⟨𝑃 ∥𝑅, 𝜌⟩ ⟨𝑃 ′ ∥𝑅, 𝜌′⟩ ⟨𝑄′ ∥𝑅, 𝜎′⟩.
Thus ⟨𝑄 ∥ 𝑅, 𝜎⟩, ⟨𝑄′′, 𝜎′′⟩ and ⟨𝑄′ ∥ 𝑅, 𝜎′⟩ are related by .
We can then continue to construct an 𝜖-tree for ⟨𝑄′ ∥𝑅, 𝜎′⟩ by
6

induction on the structure of the 𝜖-tree of ⟨𝑃 ′ ∥𝑅, 𝜌′⟩.
Information Processing Letters 186 (2024) 106492

iii. This transition is induced by an interaction between quantum
process 𝑃 and 𝑅. Then w.l.o.g., we can assume that

⟨𝑃 ,𝜌⟩ 𝑐?𝑞
←←←←←←←←←←←←←→ ⟨𝑃 ′, 𝜌⟩, ⟨𝑅,𝜌⟩ 𝑐!𝑞

←←←←←←←←←←←←→ ⟨𝑅′, 𝜌⟩,
and ⟨𝑃 ∥ 𝑅, 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ′ ∥ 𝑅′, 𝜌⟩. Then ⟨𝑅, 𝜂⟩ 𝑐!𝑞←←←←←←←←←←←←→ ⟨𝑅′, 𝜂⟩ for any
𝜂 ∈ (). From the assumption that ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩, we have ⟨𝑄, 𝜎⟩ ⇝≃

𝑐?𝑞
←←←←←←←←←←←←←→ [⟨𝑃 ′, 𝜌⟩]≃. For every leaf ⟨𝑄′′, 𝜎′′⟩ in the regular

𝜖-tree of ⟨𝑄, 𝜎⟩, there exists some 𝑄′ such that ⟨𝑄′′, 𝜎′′⟩ 𝑐?𝑞←←←←←←←←←←←←←→⟨𝑄′, 𝜎′′⟩ ∈ [⟨𝑃 ′, 𝜌′⟩]≃. These together give us ⟨𝑄′′ ∥ 𝑅, 𝜎′′⟩ 𝜏←←←←←←→⟨𝑄′ ∥𝑅′, 𝜎′′⟩ and ⟨𝑃 ′ ∥𝑅′, 𝜌⟩ ⟨𝑄′ ∥𝑅′, 𝜎′′⟩.
• The root of 𝑡⟨𝑃∥𝑅,𝜌⟩ can perform the probabilistic transition ∐

𝑖∈[𝑘] 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→. Two subcases are possible.

i. This transition is caused by 𝑅 solely, that is, ⟨𝑅, 𝜌⟩ ∐𝑖∈[𝑘] 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐

𝑖∈[𝑘]⟨𝑅𝑖, 𝑈𝑖(𝜌)⟩ and

⟨𝑃 ∥𝑅,𝜌⟩ ∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]

⟨𝑃 ∥𝑅𝑖,𝑈𝑖(𝜌)⟩
for some super-operators 𝑈𝑖. Then we have ⟨𝑄 ∥𝑅, 𝜎⟩ ∐𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐
𝑖∈[𝑘]⟨𝑄 ∥ 𝑅𝑖, 𝑈𝑖(𝜎)⟩. As ≃ is closed under super-operator ap-

plication, we have ⟨𝑃 , 𝑈𝑖(𝜌)⟩ ≃ ⟨𝑄, 𝑈𝑖(𝜎)⟩ for all 𝑖 ∈ [𝑘], and
then ⟨𝑃 ∥𝑅𝑖, 𝑈𝑖(𝜌)⟩ ⟨𝑄 ∥𝑅𝑖, 𝑈𝑖(𝜎)⟩ by the definition of .

ii. This transition is caused by 𝑃 solely, that is, ⟨𝑃 , 𝜌⟩ ∐𝑖∈[𝑘] 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐

𝑖∈[𝑘]⟨𝑃𝑖, 𝜌𝑖⟩ and

⟨𝑃 ∥𝑅,𝜌⟩ ∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]

⟨𝑃𝑖 ∥𝑅,𝜌𝑖⟩.
There are two cases. In the first case ⟨𝑃𝑖, 𝜌𝑖⟩ ≃ ⟨𝑃 , 𝜌⟩ for all 𝑖 ∈
[𝑘], then ⟨𝑃𝑖 ∥ 𝑅, 𝜌𝑖⟩ ⟨𝑄 ∥ 𝑅, 𝜎⟩ for all 𝑖 ∈ [𝑘]. In the second
case, without loss of generality, we assume ⟨𝑃1, 𝜌1⟩ ≄ ⟨𝑃 , 𝜌⟩.
Let 𝑟 = 𝖯≃

(⟨𝑃 ,𝜌⟩ ∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [⟨𝑃1, 𝜌1⟩]≃). As ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩,
we have ⟨𝑄, 𝜎⟩ ⇝≃

𝑟
←←←←←→ [⟨𝑃1, 𝜌1⟩]≃. For every leaf ⟨𝑄′′, 𝜎′′⟩ in

the regular 𝜖-tree of ⟨𝑄, 𝜎⟩, ⟨𝑄′′, 𝜎′′⟩ ∐𝑗∈[𝑘′] 𝑞𝑗 𝜏
←←→

∐
𝑗∈[𝑘′]⟨𝑄𝑗, 𝜎𝑗⟩

such that 𝖯≃

(⟨𝑄,𝜎⟩ ∐
𝑗∈[𝑘′] 𝑞𝑗 𝜏

←←→ [⟨𝑃1, 𝜌1⟩]≃
)

= 𝑟. For these

⟨𝑄𝑗, 𝜎𝑗⟩ ∈ [⟨𝑃1, 𝜌1⟩]≃, we see that ⟨𝑃1 ∥ 𝑅, 𝜌1⟩ ⟨𝑄𝑗 ∥ 𝑅, 𝜎𝑗⟩.
We then continue to construct an 𝜖-tree for ⟨𝑄𝑗 ∥ 𝑅, 𝜎𝑗⟩ by in-

duction on the structure of the 𝜖-tree of ⟨𝑃𝑖 ∥𝑅, 𝜌1⟩.
• The root of 𝑡⟨𝑃∥𝑅,𝜌⟩ can perform the external transition

𝓁
←←←←←←←→. This is

similar to the first case and thus omitted here. □

Similar to the classical value-passing CCS, as a relation between
quantum processes, ≃ is preserved by all constructors of qCCS.

Theorem 3.13 (Congruence property). If 𝑃 ≃𝑄 and 𝑃𝑖 ≃𝑄𝑖 for all 𝑖 ∈ 𝐼
then

(1)
∑
𝑖∈𝐼 𝜆𝑖.𝑃𝑖 ≃

∑
𝑖∈𝐼 𝜆𝑖.𝑄𝑖,

where 𝜆𝑖 ∈ {𝜏, 𝑐?𝑥, 𝑐!𝑒, 𝑐?𝑞, 𝑐!𝑞, 𝑈 [𝑞], 𝑀[𝑞; 𝑥]};

(2) 𝑃 ∥𝑅 ≃𝑄 ∥𝑅;

(3) 𝑃 [𝑓] ≃𝑄[𝑓];
(4) 𝑃∖𝐿 ≃𝑄∖𝐿;

(5) if 𝑏 then 𝑃 ≃ if 𝑏 then 𝑄.

Proof. The proof for (1) is similar to Theorem 38 of [7], and the others

are direct from Lemma 1. □

H. Wu, Q. Yang and H. Long

4. Equivalence checking algorithm

Efficient algorithms for checking whether an implementation real-

izes the specification faithfully or whether two implementations are
equivalent to each other are quite important in practice. So far, all
verification algorithms on qCCS (with semantics given in Fig. 1) in
the literature are restricted to ground version [22,6]. The reason is
that verification for closeness under super-operator application is gen-

erally infeasible due to the infinity of all possible super-operators. In
this section, we will build a polynomial algorithm which checks ground
branching bisimilarity for quantum processes.

4.1. Description of the algorithm

Before giving the description of the algorithm, we first introduce
some necessary notations and conceptions. Given a non-empty set
𝑆 ⊆ 𝐶𝑜𝑛, a partition of 𝑆 is a collection of pairwise disjoint sub-

sets of 𝑅 whose union is equal to 𝑆 . Given a partition of set 𝑆 and
a configuration 𝐴 ∈ 𝑆 , we use to denote the equivalence relation
induced by and [𝐴] to denote the equivalence class containing 𝐴.
Suppose 1 and 2 are two partitions of some set 𝑆 , if for each ∈ 2
there exists some ′ ∈ 1 such that ⊆ ′, then we say that 2 is finer

than 1 (or equivalently, 1 is coarser than 2). Given a configuration
𝐴 ∈ 𝐶𝑜𝑛, the set of configurations reachable from 𝐴 is denoted by 𝑅𝐴.

Since branching bisimilarity [25] is undecidable for the full CCS
model with parallel composition and restriction operators, the general
equivalence checking problem for ground branching bisimilarity on the
full qCCS model is also undecidable. Thus in this section, we will focus
on finite-state systems. Therefore the set 𝑅𝐴 is assumed to be finite to
any quantum process 𝐴. In this case, an 𝜖-tree can be characterized by
a finite directed graph where nodes of the same label are merged, just
as the following definition describes.

Definition 4.1 (𝜖-graph [29]). An 𝜖-graph 𝐺𝐴

of 𝐴 with regard to an
equivalence relation is a weighted directed graph formed by merging
nodes of the same label in an 𝜖-tree 𝑡𝐴

into one node. A node in 𝐺𝐴

is

called a sink node if its out-degree is 0. We denote the set of all sink
nodes of 𝐺𝐴

by 𝑠𝑖𝑛𝑘(𝐺𝐴

).

Based on the 𝜖-graph, we present our equivalence checking algo-

rithm for ground branching bisimilarity: GroundBranBisim(𝐴, 𝐵).

GroundBranBisim(𝐴, 𝐵) Equivalence Checking Algorithm.

Input: Two configurations 𝐴, 𝐵
Output: Whether 𝐴 ≃𝑔𝑏 𝐵
1: Compute R ∶= R𝐴 ∪ R𝐵
2: ∶= {R}
3: ∶= PreRefine()
4: (𝑏, (1, 𝛼, 2)) = FindSplit()
5: while 𝑏 = T do

6: ∶= Refine(, (1, 𝛼, 2))
7: (𝑏, (1, 𝛼, 2)) = FindSplit()
8: if [𝐴] = [𝐵] then

9: return T
10: else

11: return F

The algorithm starts with computing the set 𝑅 of all configurations
reachable from 𝐴 or 𝐵. It then iteratively constructs set 𝑅∕ ≃𝑔𝑏, i.e.,
the set of equivalence classes of 𝑅 under ≃𝑔𝑏. The iteration procedure
starts with the coarsest partition = {𝑅}, and then keeps refining the
current partition by analyzing one-step difference until satisfies the
definition of ground branching bisimulation. It will surely terminate as
the initial partition is finite, and after each iteration we will obtain a
strictly finer partition. Moreover, when it terminates, the final partition
7

is just 𝑅∕ ≃𝑔𝑏. Hence to decide whether 𝐴 and 𝐵 are bisimilar, we only
Information Processing Letters 186 (2024) 106492

need to check whether 𝐴 and 𝐵 belong to the same equivalence class
of the final partition. Now we describe the algorithm in detail.

4.1.1. Preprocess the partition

After computing the reachable configurations of 𝐴 and 𝐵, the proce-

dure PreRefine() is called to make a preprocessing of the partition. It
simply refines the partition according to 𝑞𝑣(𝑃) and tr𝑞𝑣(𝑃)(𝜌) for each
configuration ⟨𝑃 , 𝜌⟩ in the partition. After this procedure, all configura-

tions in the same subset of the refined partition will have the same free
quantum variables and equal partial trace.

4.1.2. Find the splitter

According to the definition of ground branching bisimilarity, the
splitter should be defined based on 𝓁-transitions and 𝑝-transitions. Let
us take 𝓁-transition for example. Given an equivalence on 𝐶𝑜𝑛 and
two equivalence classes , ′ ∈ ∕𝐶𝑜𝑛. Now suppose there are two con-

figurations 𝐴1, 𝐴2 ∈ such that the 𝓁-transition 𝐴1 ⇝

𝓁
←←←←←←←→ ′ of 𝐴1

cannot be bisimulated by 𝐴2. In this case, the equivalence class can
be refined further using a splitter defined by the 𝓁-transition. According

to the definition of 𝓁-transition, 𝐴1 ⇝

𝓁
←←←←←←←→ ′ is associated with a regu-

lar 𝜖-tree 𝑡𝐴1

satisfying that 𝐿
𝓁
←←←←←←←→ 𝐿′ ∈ ′ for every leaf 𝐿 of 𝑡𝐴1

. As 𝐿

and 𝐴1 belong to the same equivalence class , the difference between
𝐴1 and 𝐴2 about the existence of the 𝓁-transition can be exactly char-

acterized by the difference between 𝐿 and 𝐴2 regarding the existence

of the one-step 𝓁 action. Thus when we use the 𝓁-transition 𝐴1 ⇝

𝓁
←←←←←←←→ ′

to define a splitter, it can be interpreted as a one-step state-changing
transition between equivalence classes and ′. Consequently, the pair
(𝓁, ′) can be used as a splitter for .

The following definition of 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟 then captures the above ob-

servation about splitters. Given a partition and an equivalence class
 ∈ , for any configuration 𝐴 ∈ , we define

𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟(𝐴)

= {(𝓁,′) ∣𝐴
𝓁
←←←←←←←→𝐴′ ∈ ′ ∧ (𝓁 ≠ 𝜏 ∨ ′ ≠)} ∪

{(𝑝𝜏,′) ∣𝐴
∐
𝑖∈𝐼 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈𝐼 𝐴𝑖 ∧ (∃𝑖 ∈ 𝐼. 𝐴𝑖 ∈ ′ ≠)},

where the symbol 𝑝𝜏 is used to indicate any probabilistic action 𝑝𝜏
while do not specify the concrete probability value 𝑝. We further define
the set of all possible splitters for as follows:

𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟() =
⋃

𝐴∈
𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟(𝐴).

FindSplit() Find a splitter of the current partition.

Input: A partition
Output: A splitter of if there is one

1: for all ∈ do

2: Compute the set 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟() for
3: for all (𝛼, ′) ∈ 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟() do

4: if 𝛼 = 𝑝𝜏 then

5: 𝑆𝑝𝑙𝑖𝑡 ← SplitP(, ̂𝑝𝜏, ′)
6: if |𝑆𝑝𝑙𝑖𝑡| > 1 then

7: return (𝐓, (, ̂𝑝𝜏, ′))
8: else if 𝛼 = 𝓁 then

9: 𝑆𝑝𝑙𝑖𝑡 ← SplitL(, 𝓁, ′)
10: if |𝑆𝑝𝑙𝑖𝑡| > 1 then

11: return (𝐓, (, 𝓁, ′))
12: return (𝐅, (∅, 𝜏, ∅))

Now for each (𝛼, ′) ∈ 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟(), according to the type of 𝛼,

FindSplit() will invoke SplitP and SplitL respectively.

• SplitP(1, ̂𝑝𝜏, 2): It splits 1 by using the splitter (𝑝𝜏, 2), which is

associated with a 𝑝-transition. Firstly, for each configuration 𝐴 ∈

H. Wu, Q. Yang and H. Long

SplitP(1, ̂𝑝𝜏, 2).

Input: A triple (1, ̂𝑝𝜏, 2)
Output: A partition of 1 according to the splitter (𝑝𝜏, 2)

1: Construct the set Init = {𝐴 ∈ 1 ∣𝐴
∐

𝑖∈𝐼 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

∐
𝑖∈𝐼 𝐴𝑖 ∧ (∃𝑖 ∈ 𝐼. 𝐴𝑖 ∈ 2)}

2: Compute the partition Init = Init∕ =𝑝
3: Split ← SplitDeltaP(1, Init)
4: return Split

SplitDeltaP(1, Init).

Input: A pair (1, Init)
Output: A partition of 1
1: 𝐾 ← |Init|, {1, ⋯ , 𝐾} ← Init
2: for all 𝑖 ∈ [𝐾] do

3: 𝑡𝑜𝐶𝑜𝑛 ← 𝐓, Dec ←𝑖, Und ← 1 ⧵
⋃
𝑗∈[𝐾]𝑗

4: while 𝑡𝑜𝐶𝑜𝑛 = 𝐓 do

5: 𝑡𝑜𝐶𝑜𝑛 ← 𝐅
6: for all 𝐵 ∈Und do

7: if there exists 𝐵′ such that 𝐵 𝜏
←←←←←→𝐵′ ∈ Dec, 𝐨𝐫 there exists {𝐵𝑗}𝑗∈𝐽

such that 𝐵
𝑝𝑗𝜏

←←←←←←←←←←←←→𝐵𝑗 ∈Dec holds for all 𝑗 ∈ 𝐽 then

8: 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] ← 1, 𝑡𝑜𝐶𝑜𝑛 ← 𝐓
9: Und ← Und ⧵ {𝐵}, Dec ← Dec ∪ {𝐵}

10: for all 𝑖 ∈ [𝐾] do

11: ′
𝑖
←𝑖

12: for all 𝐵 ∈ 1 ⧵
⋃
𝑖∈[𝐾]𝑖 do

13: 𝑁𝑢𝑚 ← 0, 𝑚 ← 0
14: for all 𝑗 ∈ [𝐾] do

15: if 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑗] = 1 then

16: 𝑁𝑢𝑚 ←𝑁𝑢𝑚 + 1, 𝑚 ← 𝑗

17: if 𝑁𝑢𝑚 = 1 then

18: ′
𝑚
←′

𝑚
∪ {𝐵}

19: Rem ← 1 ⧵
⋃
𝑖∈[𝐾]

′
𝑖

20: if Rem = ∅ then

21: return {′
1, ⋯ , ′

𝐾
}

22: else

23: return {′
1, ⋯ , ′

𝐾
} ∪Rem

1, if it can perform a state-changing probabilistic transition, then
we added it to the set Init. Then we construct the partition Init
for the set Init according to the equivalence relation =𝑝, which is
defined as 𝐴 =𝑝 𝐴′ if and only if

𝖯 (𝐴
∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 2) = 𝖯 (𝐴
′

∐
𝑗∈[𝑘′] 𝑝

′
𝑗
𝜏

←←→ 2).

In other words, configurations in Init are partitioned according to
their respective normalized probability of leaving 1 to 2. Next
the procedure SplitDeltaP is invoked to split 1 according to Init .

Now suppose Init = {1, ⋯ , 𝐾} (where 𝐾 = |Init|) and Und =
1 ⧵

⋃
𝑖∈[𝐾]𝑖. More specifically, for all 𝑖 ∈ [𝐾], SplitDeltaP will

add all configurations 𝐵 ∈ Und which satisfy the following condi-

tions (denoted by Δ𝑖
𝑃

) into 𝑖, and form a new equivalence class
′
𝑖
:

– There exists an 𝜖-graph 𝐺𝐵

with 𝑠𝑖𝑛𝑘(𝐺𝐵

) ⊆𝑖;

– For any other 𝑗 ∈ Init with 𝑗 ≠ 𝑖, there does not exist any 𝜖-
graph 𝐺𝐵

with 𝑠𝑖𝑛𝑘(𝐺𝐵

) ⊆𝑗 .

The remaining configurations are collected into a set called Rem.
Now {′

1, ⋯ , ′
𝐾
} ∪Rem forms a refinement of 1.

We further explain how to verify the property Δ𝑖
𝑃

for every 𝑖 ∈ [𝐾].
Here we define a two-dimensional boolean array 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖], with
the first entry 𝐵 ∈ 1 ⧵

⋃
𝑖∈[𝐾]𝑖 and the second entry 𝑖 ∈ [𝐾]. We

will ensure that 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] is set to 1 if and only if there exists
an 𝜖-graph 𝐺𝐵

with 𝑠𝑖𝑛𝑘(𝐺𝐵

) ⊆ 𝑖. This will then imply that 𝐵

satisfies property Δ𝑖
𝑃

iff 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] = 1 and 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑗] = 0 for all
𝑗 ≠ 𝑖. To check the existence of such 𝜖-graphs, we can proceed as
follows for each 𝑖 ∈ [𝐾]: ⋃
8

1. Initialize Dec to 𝑖 and Und to 1 ⧵ 𝑗∈[𝐾]𝑗 .
Information Processing Letters 186 (2024) 106492

2. For each process 𝐵 ∈ Und , we consider the immediate transi-

tions of 𝐵. If there exists 𝐵′ such that 𝐵
𝜏
←←←←←←→ 𝐵′ ∈ Dec (i.e., this

nondeterministic internal transition arrives Dec), or there ex-

ists {𝐵𝑗}𝑗∈𝐽 such that 𝐵
𝑝𝑗𝜏

←←←←←←←←←←←←←←→ 𝐵𝑗 ∈ Dec holds for all 𝑗 ∈ 𝐽 (i.e.,
all branches of this probabilistic transition arrive Dec), then we
will set 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] = 1, delete it from Und , and add it into Dec.

3. Repeat step 2 until the set Dec does not change, the resulting
set Dec will contain exactly these configurations 𝐵 satisfying
that there exists an 𝜖-graph 𝐺𝐵

with 𝑠𝑖𝑛𝑘(𝐺𝐵

) ⊆𝑖.

SplitL(1, 𝓁, 2).

Input: A triple (1, 𝓁, 2)
Output: A partition of 1 according to the splitter (𝓁, 2)

1: Construct the set 𝐼𝑛𝑖𝑡 = {𝐵 ∈ 1 ∣𝐵
𝓁
←←←←←←→𝐵′ ∈ 2}

2: Split ← SplitDeltaL(1, 𝐼𝑛𝑖𝑡)
3: return Split

• SplitL(1, 𝓁, 2): It splits 1 by using the splitter (𝓁, 2), which is
associated with an 𝓁-transition. Now for each configuration 𝐴 ∈ 1,
if it can perform an 𝓁 action and evolve into a configuration 𝐴′ ∈
2, we add it into the set Init . Then the procedure SplitDeltaL will
add all configurations 𝐴 ∈ 1 ⧵ Init which satisfies the following
condition (denoted by Δ𝐿) into Init , and form a new equivalence
class 𝑇 :

– There exists an 𝜖-graph 𝐺𝐵

such that 𝑠𝑖𝑛𝑘(𝐺𝐵

) ⊆Init .

The remaining configurations will be put into the set 𝐹 . Now
𝑇 ∪𝐹 forms a refinement of 1.

SplitDeltaL(1, 𝐼𝑛𝑖𝑡).
Input: A pair (1, 𝐼𝑛𝑖𝑡)
Output: A partition of 1
1: 𝑡𝑜𝐶𝑜𝑛 ← 𝐓, Und ← 1 ⧵𝐼𝑛𝑖𝑡, Dec ←𝐼𝑛𝑖𝑡

2: while 𝑡𝑜𝐶𝑜𝑛 = 𝐓 do

3: 𝑡𝑜𝐶𝑜𝑛 ← 𝐅
4: for all 𝐵 ∈Und do

5: if there exists 𝐵′ such that 𝐵
𝜏
←←←←←→ 𝐵′ ∈ Dec, 𝐨𝐫 there exists {𝐵𝑗}𝑗∈𝐽

such that 𝐵
𝑝𝑗𝜏

←←←←←←←←←←←←→𝐵𝑗 ∈Dec holds for all 𝑗 ∈ 𝐽 then

6: 𝐴𝑟𝑟𝑎𝑦[𝐵] ← 1, 𝑡𝑜𝐶𝑜𝑛 ← 𝐓
7: Und ←Und ⧵ {𝐵}, Dec ←Dec ∪ {𝐵}
8: 𝑇 ←𝐼𝑛𝑖𝑡

9: for all 𝐵 ∈ 1 ⧵𝐼𝑛𝑖𝑡 do

10: if 𝐴𝑟𝑟𝑎𝑦[𝐵] = 1 then

11: 𝑇 ←𝑇 ∪ {𝐵}
12: 𝐹 ← 1 ⧵𝑇

13: if 𝐹 = ∅ then

14: return {𝑇 }
15: else

16: return {𝑇 , 𝐹 }

4.1.3. Carry out the refinement

Once a splitter (𝛼, 2) for some 1 has been identified, the procedure

Refine(, (1, 𝛼, 2)) can refine the partition by using this splitter.
According to the type of 𝛼, this procedure will invoke SplitP or SplitL

correspondingly to obtain the refined partition.

4.2. Correctness and complexity

As we have discussed earlier, GroundBranBisim will terminate in
finite steps. We then show its correctness as the following proposition.

Proposition 4.2 (Correctness). Given two configurations 𝐴 and 𝐵, the al-
gorithm GroundBranBisim(𝐴, 𝐵) returns true if and only if 𝐴 ≃𝑔𝑏 𝐵.

H. Wu, Q. Yang and H. Long

Refine (, (1, 𝛼, 2)) Refine according to the splitter (𝛼, 2) for 1.

Input: A partition and a splitter (𝛼, 2) for 1
Output: A refined partition Refine for
1: if 𝛼 = 𝑝𝜏 then

2: 𝑆𝑝𝑙𝑖𝑡 ← SplitP(1, 𝜑𝜏, 2)
3: else if 𝛼 = 𝓁 then

4: 𝑆𝑝𝑙𝑖𝑡 ← SplitL(1, 𝓁, 2)
5: Refine ← ⧵ {1} ∪𝑆𝑝𝑙𝑖𝑡
6: return Refine

Proof. The algorithm first computes the set 𝑅 that contains all config-

urations reachable from 𝐴 and 𝐵. Then it forms the coarsest partition
 = {𝑅} and refines it. We will show that when cannot be refined
further, =𝑅∕ ≃𝑔𝑏. It then implies that [𝐴] = [𝐵] iff 𝐴 ≃𝑔𝑏 𝐵.

Suppose there exists a splitter (𝛼, 2) for some equivalence class 1,
the algorithm will start a new run of Refine. Let 𝑘 denote the number
of executions of Refine, and 𝑘 be the current partition after the
execution of Refine𝑘. It is easy to see that each 𝑘+1 is strictly finer
than 𝑘. Let 𝑛 denote the total number of executions of Refine, then
𝑛 ≤ |𝑅|.

We still need to show that each 𝑘 is no finer than 𝑅∕ ≃𝑔𝑏, in other
words ≃𝑔𝑏 ⊆ 𝑘

holds for all 𝑘 ∈ [𝑛], where 𝑘 is the induced equiva-

lence of 𝑘. This is proved by induction on 𝑘. The base case is obvious.
Now suppose ≃𝑔𝑏 ⊆ 𝑘

, we will show that ≃𝑔𝑏 ⊆ 𝑘+1
. Consider the

execution of Refine𝑘+1. If the splitter for some 1 is of the form (𝑝𝜏, 2),
we refine the set 1 into {1, ⋯ , 𝐾} ∪Rem. Now suppose 𝐴 ∈𝑖 for
some 𝑖 ∈ [𝐾] and 𝐵 ∉ 𝑖, then (𝐴, 𝐵) ∉ 𝑘+1

. We need to show that
(𝐴, 𝐵) ∉≃𝑔𝑏. We know that 𝐴 satisfies property Δ𝑖

𝑃
while 𝐵 does not.

Hence there exists a 𝑝-transition 𝐴 ⇝𝑘

𝑝𝑖
←←←←←←←←→ 2 of 𝐴 which cannot be

bisimulated by 𝐵. Thus by induction hypothesis ≃𝑔𝑏 ⊆ 𝑘
, we can ob-

tain that (𝐴, 𝐵) ∉ ≃𝑔𝑏. □

Before concluding this section, we analyze the time complexity of
our equivalence checking algorithm and compare it with the one in
[22] for ground weak bisimilarity.

Theorem 4.3. Let the number of configurations reachable from 𝐴 and 𝐵 be
𝑛. The time complexity of the algorithm GroundBranBisim(𝐴, 𝐵) is (𝑛7).

Proof. Since 𝐾 = |Init| ≤ |1| ≤ 𝑛, the for loop at stage 2 of procedure

SplitDeltaP can run no more than 𝑛 times. Since |Und| ≤ |1| ≤ 𝑛, the

while loop at stage 4 can run no more 𝑛 times. In each iteration of the
while loop, all possible one-step transitions for configurations in Und
need to be examined and can be done in (𝑛2) time. The resulting com-

plexity of SplitDeltaP is therefore (𝑛 ⋅ 𝑛 ⋅ 𝑛2) = (𝑛4), which implies
that the complexity of procedure SplitP is also (𝑛4). Similarly, we can
obtain that the complexity of SplitL is (𝑛3). Since there are 𝑛 configu-

rations in all and each configuration has at most 𝑛 different transitions,
the inner for loop at stage 3 in procedure FindSplit can run no more
than 𝑛2 times. Since SplitP has complexity (𝑛4) and SplitL (𝑛3), it
follows that the overall complexity of FindSplit is (𝑛6). Every time

FindSplit is executed and returns T, we will obtain a strictly finer par-

tition. Then the while loop at stage 5 of GroundBranBisim can run
at most 𝑛 times. It is not hard to see that the complexity of PreRefine

and Refine are (𝑛2) and (𝑛4), respectively. As we already know that

FindSplit works in (𝑛6) steps, summing the total shows that Ground-

BranBisim executes (𝑛2 + 𝑛 ⋅ (𝑛6 + 𝑛4)) =(𝑛7) stages. □

Remark 4.4. In [22], Qin et al. give a polynomial-time equivalence
checking algorithm for the ground weak bisimilarity proposed in [4].
Here we give a brief analysis of the lower bound of the algorithm in
[22]. Let the number of configurations reachable from 𝐴 and 𝐵 be 𝑛.
As noted in [22], the total number of state pairs examined in the algo-
9

rithm is Θ(𝑛4). Now consider any such pair (𝐴, 𝐵). For each transition
Information Processing Letters 186 (2024) 106492

of 𝐴, the algorithm uses the technique in [24] to check if there exists a
weak matching transition for 𝐵. In [22], the authors reduce the weak
matching transition checking problem to a linear programming prob-

lem. The number of variables and constraints in the LP problem are
both Θ(𝑛2). Since the best algorithm for solving the LP problem with
size 𝑁 has time complexity Ω(𝑁2), the time complexity to solving the
reduced LP problem would be Ω(𝑛4). Thus the overall time complexity
of the verification algorithm in [22] is Ω(𝑛8).

5. Conclusions and future work

In this paper, we propose a new branching bisimilarity for qCCS,
which can be seen as a conservative generalization of van Glabbeek’s
branching bisimilarity for classical CCS. Compared to the previous
work, our branching bisimilarity is the first congruence relation that
preserves branching structures of the quantum processes. We also pro-

pose a polynomial-time checking algorithm for the ground branching
bisimilarity and show that it is computationally more efficient than the
one in [22] for ground weak bisimilarity. In the future, we would like
to develop efficient tools for automatic branching bisimilarity check-

ing, especially for applications like quantum communication protocols
verification.

CRediT authorship contribution statement

Hao Wu: Writing – review & editing, Writing – original draft,
Methodology, Formal analysis, Conceptualization. Qizhe Yang: Writ-

ing – review & editing, Writing – original draft, Methodology, Formal
analysis, Conceptualization. Huan Long: Writing – review & editing,
Writing – original draft, Methodology, Formal analysis, Conceptualiza-

tion.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

We are grateful to Prof. Yuxi Fu and Prof. Yuxin Deng for the valu-

able discussion. We thank BASICS members for their interest. We also
thank the editor and the reviewers for their valuable comments and sug-

gestions. The support from the National Natural Science Foundation of
China (62072299) is acknowledged.

References

[1] T. Basten, Branching bisimilarity is an equivalence indeed!, Inf. Process. Lett. 58 (3)
(1996) 141–147, https://doi .org /10 .1016 /0020 -0190(96)00034 -8.

[2] V. Castiglioni, S. Tini, Raiders of the lost equivalence: probabilistic branching bisim-

ilarity, Inf. Process. Lett. 159–160 (2020) 105947, https://doi .org /10 .1016 /j .ipl .
2020 .105947.

[3] T.A.S. Davidson, Formal Verification Techniques Using Quantum Process Calculus,
Ph.D. thesis, University of Warwick, 2012.

[4] Y. Deng, Y. Feng, Open bisimulation for quantum processes, in: J.C.M. Baeten, T.
Ball, F.S. de Boer (Eds.), Theoretical Computer Science, in: Lecture Notes in Com-

puter Science, Springer, Berlin, Heidelberg, 2012, pp. 119–133.

[5] Y. Deng, Y. Feng, Open bisimulation for quantum processes, (full version), https://

doi .org /10 .48550 /arXiv .1201 .0416, 2012.

[6] Y. Feng, Y. Deng, M. Ying, Symbolic bisimulation for quantum processes, ACM
Trans. Comput. Log. 15 (2) (2014) 14, https://doi .org /10 .1145 /2579818.

[7] Y. Feng, R. Duan, Z. Ji, M. Ying, Probabilistic bisimulations for quantum processes,
Inf. Comput. 205 (11) (2007) 1608–1639, https://doi .org /10 .1016 /j .ic .2007 .08 .

001.

https://doi.org/10.1016/0020-0190(96)00034-8
https://doi.org/10.1016/j.ipl.2020.105947
https://doi.org/10.1016/j.ipl.2020.105947
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib3564D8B5C5309CC2F85A6372E25A19EAs1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib3564D8B5C5309CC2F85A6372E25A19EAs1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibD14D6ACD7DE20A97343E76B7C098F9C2s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibD14D6ACD7DE20A97343E76B7C098F9C2s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibD14D6ACD7DE20A97343E76B7C098F9C2s1
https://doi.org/10.48550/arXiv.1201.0416
https://doi.org/10.48550/arXiv.1201.0416
https://doi.org/10.1145/2579818
https://doi.org/10.1016/j.ic.2007.08.001
https://doi.org/10.1016/j.ic.2007.08.001

Information Processing Letters 186 (2024) 106492H. Wu, Q. Yang and H. Long

[8] Y. Feng, R. Duan, M. Ying, Bisimulation for quantum processes, in: Proceedings of
the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL’11, Association for Computing Machinery, New York, NY, USA,
2011, pp. 523–534.

[9] R.P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (6) (1982)
467–488, https://doi .org /10 .1007 /BF02650179.

[10] Y. Fu, Theory of interaction, Theor. Comput. Sci. 611 (2016) 1–49, https://doi .org /
10 .1016 /j .tcs .2015 .07 .043.

[11] Y. Fu, Model independent approach to probabilistic models, Theor. Comput. Sci.
869 (2021) 181–194, https://doi .org /10 .1016 /j .tcs .2021 .04 .001.

[12] S.J. Gay, R. Nagarajan, Communicating quantum processes, in: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL’05, Association for Computing Machinery, New York, NY, USA, 2005,
pp. 145–157.

[13] S. Graf, J. Sifakis, Readiness semantics for regular processes with silent actions,
in: T. Ottmann (Ed.), Automata, Languages and Programming, in: Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 1987, pp. 115–125.

[14] M. Hennessy, A proof system for communicating processes with value-passing,
Form. Asp. Comput. 3 (4) (1991) 346–366, https://doi .org /10 .1007 /BF01642508.

[15] M. Hennessy, A. Ingolfsdottir, A theory of communicating processes with value
passing, Inf. Comput. 107 (2) (1993) 202–236, https://doi .org /10 .1006 /inco .1993 .
1067.

[16] P. Jorrand, M. Lalire, Toward a quantum process algebra, in: Proceedings of the 1st
Conference on Computing Frontiers, CF’04, Association for Computing Machinery,
New York, NY, USA, 2004, pp. 111–119.

[17] M. Lalire, Relations among quantum processes: bisimilarity and congruence,
Math. Struct. Comput. Sci. 16 (3) (2006) 407–428, https://doi .org /10 .1017 /
S096012950600524X.

[18] R. Milner, Communication and Concurrency, Prentice-Hall, Inc., 1989.

[19] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I, Inf. Comput.
100 (1) (1992) 1–40, https://doi .org /10 .1016 /0890 -5401(92)90008 -4.

[20] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, II, Inf. Comput.
100 (1) (1992) 41–77, https://doi .org /10 .1016 /0890 -5401(92)90009 -5.

[21] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cam-

bridge University Press, Cambridge, New York, 2010, 10th anniversary ed edn.

[22] X. Qin, Y. Deng, W. Du, Verifying quantum communication protocols with ground
bisimulation, in: A. Biere, D. Parker (Eds.), Tools and Algorithms for the Con-

struction and Analysis of Systems, in: Lecture Notes in Computer Science, Springer
International Publishing, Cham, 2020, pp. 21–38.

[23] R. Segala, Modeling and Verification of Randomized Distributed Real-Time Systems,
Thesis, Massachusetts Institute of Technology, 1995.

[24] A. Turrini, H. Hermanns, Polynomial time decision algorithms for probabilistic au-

tomata, Inf. Comput. 244 (2015) 134–171, https://doi .org /10 .1016 /j .ic .2015 .07 .
004.

[25] R.J. van Glabbeek, W.P. Weijland, Branching time and abstraction in bisimula-

tion semantics, J. ACM 43 (3) (1996) 555–600, https://doi .org /10 .1145 /233551 .
233556.

[26] W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned, Nature 299 (5886)
(1982) 802–803.

[27] H. Wu, H. Long, Probabilistic weak bisimulation and axiomatization for probabilistic
models, Inf. Process. Lett. 182 (2023) 106399, https://doi .org /10 .1016 /j .ipl .2023 .
106399.

[28] M. Ying, Y. Feng, R. Duan, An algebra of quantum processes, ACM Trans. Comput.
Log. 10 (3) (2009) 36.

[29] W. Zhang, H. Long, X. Xu, Uniform random process model revisited, in: A.W. Lin
(Ed.), Programming Languages and Systems, in: Lecture Notes in Computer Science,
Springer International Publishing, Cham, 2019, pp. 388–404.
10

http://refhub.elsevier.com/S0020-0190(24)00022-X/bib23BD04F34A955A569E28EA59B3FA7016s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib23BD04F34A955A569E28EA59B3FA7016s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib23BD04F34A955A569E28EA59B3FA7016s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib23BD04F34A955A569E28EA59B3FA7016s1
https://doi.org/10.1007/BF02650179
https://doi.org/10.1016/j.tcs.2015.07.043
https://doi.org/10.1016/j.tcs.2015.07.043
https://doi.org/10.1016/j.tcs.2021.04.001
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib733E8FE6B2F336A4A6A90C21942CE0C3s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib733E8FE6B2F336A4A6A90C21942CE0C3s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib733E8FE6B2F336A4A6A90C21942CE0C3s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib733E8FE6B2F336A4A6A90C21942CE0C3s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib2BB998A6DB5943C968E0C0F435F771F1s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib2BB998A6DB5943C968E0C0F435F771F1s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib2BB998A6DB5943C968E0C0F435F771F1s1
https://doi.org/10.1007/BF01642508
https://doi.org/10.1006/inco.1993.1067
https://doi.org/10.1006/inco.1993.1067
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibEE617CA64D457DC9194E31D118DDB4F5s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibEE617CA64D457DC9194E31D118DDB4F5s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibEE617CA64D457DC9194E31D118DDB4F5s1
https://doi.org/10.1017/S096012950600524X
https://doi.org/10.1017/S096012950600524X
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibC402E1BA45C829211F7B8E6E9FAE4C27s1
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib9EE51A2EA7C2BABB77D316B4DD212B42s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib9EE51A2EA7C2BABB77D316B4DD212B42s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib05F547A7BEA2BF762FEFEDCA44AEB3D8s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib05F547A7BEA2BF762FEFEDCA44AEB3D8s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib05F547A7BEA2BF762FEFEDCA44AEB3D8s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib05F547A7BEA2BF762FEFEDCA44AEB3D8s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib097F865780DDF4027E2BE68FAB1F7C86s1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib097F865780DDF4027E2BE68FAB1F7C86s1
https://doi.org/10.1016/j.ic.2015.07.004
https://doi.org/10.1016/j.ic.2015.07.004
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib06D5B62FCB313844E17D6DBAE2A08D9Bs1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib06D5B62FCB313844E17D6DBAE2A08D9Bs1
https://doi.org/10.1016/j.ipl.2023.106399
https://doi.org/10.1016/j.ipl.2023.106399
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibA4E017F479AE038F8C15D3D9B0FB4DEFs1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bibA4E017F479AE038F8C15D3D9B0FB4DEFs1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib02FC7DE9D194843C581A97C58C74065Ds1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib02FC7DE9D194843C581A97C58C74065Ds1
http://refhub.elsevier.com/S0020-0190(24)00022-X/bib02FC7DE9D194843C581A97C58C74065Ds1

	Branching bisimulation semantics for quantum processes
	1 Introduction
	1.1 Related work
	1.2 Contribution
	1.3 Organization

	2 Quantum CCS
	3 Branching bisimulation between quantum processes
	3.1 Quantum branching bisimulation
	3.2 Congruence property

	4 Equivalence checking algorithm
	4.1 Description of the algorithm
	4.1.1 Preprocess the partition
	4.1.2 Find the splitter
	4.1.3 Carry out the refinement

	4.2 Correctness and complexity

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

