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Abstract
The reachability problem for vector addition systems with states (VASS) is Ackermann-complete.
For every k ≥ 3, a completeness result for the k-dimensional VASS reachability problem is not yet
available. It is shown in this paper that the 3-dimensional VASS reachability problem is in Tower,
improving upon the current best upper bound F7 established by Leroux and Schmidt in 2019.
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1 Introduction

Petri net theory has been studied for over half a century. As a model for concurrency and
causality, Petri net models find a wide range of applications in system specification and
verification [2, 9]. Two equivalent formulations of Petri nets, vector addition systems (VAS)
and vector addition systems with states (VASS) have been studied for a long time. In
vector addition systems configurations are formulated as vectors on non-negative integers.
Computation rules of systems are captured by vectors on integers. A computation is a
sequence of legal transitions of configurations. The reachability problem asks whether a
target configuration is reachable from an initial configuration in a given VAS. The problem
holds a central position in the study of VAS, as numerous issues in the areas of language,
logic, and concurrency can be effectively reduced to this particular problem [24].

The decidability result of the VASS reachability problem is among the most signific-
ant theoretical breakthroughs in computer science. In the 1970s, some decidability res-
ults [10, 14] for low dimensional VASSes have been established. The initial work of Sacerdote
and Tenney [23] gives an incomplete proof of the decidability of the problem. A complete
decidability proof of the problem was given in the early 1980s by Mayr [20]. The involved
proof was later refined by Kosaraju [11] and Lambert [12]. The algorithm is now referred to
as KLMST decomposition. In recent years, Leroux gives another proof of the decidability
in a more logic setting using Presburger invariants [15].

In 2015 Leroux and Schmitz obtained the first upper bound for the KLMST algorithm,
pointing out that it is in the cubic-Ackermann complexity class Fω3 [17]. The upper bound
was improved to Fω [18] by Leroux and Schmitz in 2019. The EXPSPACE-hardness of
the problem was shown by Lipton in 1976 [19]. For many years this has been the only lower
bound we knew. Until in 2018 Czerwiński et al came up with the “Amplifier” technique and
applied it to obtain a non-elementary lower bound [4]. This was improved to Fω in 2022,
independently by several groups [5, 13, 16]. The Ackermann-completeness of the problem is
thus established.
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Reachability of VASSes with fixed dimension has also gathered widespread attention.
Completeness results have been established for low dimensional VASS. Haase et al showed
that the reachability of 1-dimensional VASS is NP-complete [8]. In the 2-dimensional case,
Blondin et al proved that the problem is PSPACE complete [1] and Englert, Lazić and
Totzke pointed out that the problem is NL-complete [7] if unary encoding is used. It has
been known from the early stage that while reachability sets are semi-linear in the two
dimensional case, they are not semi-linear for VASSes in three or more dimensions [10].
This stops us from generalizing the proof of the completeness result for 2-VASS to higher
dimensional VASS. A completeness characterization of the k-VASS reachability problem,
where k ≥ 3, remains open. Currently it is known that the reachability problem for d-VASS
with d ≥ 3 is in Fd+4 [18]. For the lower bound Leroux proved in [16] that reachability in
(2d+4)-VASS is Fd-hard for d ≥ 3, and Czerwiński proved that reachability in 8-VASS is
non-elementary [3, 6]. For 3-VASS in particular, the best lower bound is PSPACE-hard [1]
and the best upper bound is F7 [18]. There remains a substantial gap between the known
lower bounds and the known upper bounds for the reachability problem of VASSes with
fixed dimension.

The main contribution of the present paper is stated in the following theorem.

▶ Theorem 1. Reachability in 3-VASSes is in Tower.

The theorem is proved by modifying the well-known KLMST decomposition algorithm for
the general VASS reachability problem. Our algorithm incorporates the linear path scheme
characterization for 2-VASS to the general KLMST algorithm. We show that a kind of special
3-VASS, to be called effectively 2-dimensional, has the linear path scheme property. Based
on this observation the algorithm replaces every newly generated effectively 2-dimensional
component immediately by a linear path scheme, preventing further decomposition of the
effectively 2-dimensional component. In this way the depth of decomposition tree is bounded
by a linear function, hence the Tower upper bound. The techniques developed for proving
Theorem 1 can be applied to derive the following result.

▶ Theorem 2. Reachability in the effectively 2-dimensional 3-VASSes is in EXPSPACE.

The rest of the paper is organized as follows. Section 2 states the preliminaries. Section 3
reviews the linear path schemes for the 2-VASSes and extends the technique to the effectively
2-dimensional 3-VASSes. Section 4 recalls the main KLMST constructions. Section 5 defines
the 3-normal KLM sequences and derives a tower space algorithm for the 3-VASSes, which
is the main contribution of the paper. Section 6 makes a few comments.

2 Preliminaries

Let N be the set of natural numbers (nonnegative integers) and Z the set of integers. Let V
denote the set of variables for nonnegative integers. For L ∈ N \ {0} the notation [L] stands
for the set {1, . . . , L} and [L]0 for {0} ∪ [L]. For a finite set S let |S| denote the number
of elements of S. We introduce a super number ω with n < ω for all n ∈ N. Intuitively ω

stands for a number that can be as large as necessary. Let Nω = N ∪ {ω} be the extended
set of natural numbers. The partial order ⊑ over Nω is defined as follows: x ⊑ y whenever
y ∈ {x, ω}.

We write m,n for d-dimensional vectors in Nd, u,v for vectors in Ndω, and x,y for vectors
in Vd. For i ∈ [d] we write for example a(i) for the i-th entry of a. Let 1 = (1, . . . , 1)† and
0 = (0, . . . , 0)†, where (_)† is the transposition operator. We write σ for a finite sequence of



Qizhe Yang, Yuxi Fu XX:3

vectors and |σ| for the length of the sequence. For i ∈ [|σ|] we write σ[i] for the i-th element
that appears in σ. The notation σ[i, . . . , j] is for the subsequence σ[i]σ[i+ 1] . . . σ[j] if i ≤ j

and is for ϵ if i > j.
Recall that the 1-norm ∥m∥1 of m is

∑
i∈[d] |m(i)|, and the 1-norm ∥A∥1 of an integer

matrix A is
∑
i,j |A(i, j)|. The 1-norm ∥u∥1 of u ∈ Ndω is defined by

∑
i∈[d], u(i)̸=ω |u(i)|,

ignoring the ω entries.

2.1 Non-Elementary Complexity Classes
Reachability in VASS is not elementary even in fixed dimensions [5]. To characterize the
problem complexity, one needs complexity classes beyond the elementary classes. Schmidt in-
troduced an ordinal indexed class of complexity classes F3,F4, . . . ,Fω, . . . , Fω2 , . . . ,Fωω , . . .

and showed that many problems arising in theoretical computer science are complete prob-
lems in this hierarchy [24]. In the above sequence F3 =Tower and Fω = Ackermann.
The class Tower is closed under elementary reductions and Ackermann is closed under
primitive recursive reductions. For the purpose of this paper it suffices to say that Tower
contains all the problems whose space complexity is bounded by tower functions of the form

2
. .
.
2n}

f(n)
,

where f(n) is an elementary function.
The notation poly(n) will stand for a polynomial bound, and exp(n) an exponential

bound. Most of the time we shall not be explicit about constant factors when making
statements about upper bounds.

2.2 Integer Programming
We shall need a result in integer linear programming [21]. Let A be an m× k integer matrix
and x ∈ Vk. The homogeneous equation system of A is given by the linear equation system
E specified by

Ax = 0. (1)

A nontrivial solution to (1) is some m ∈ Nk \ {0} such that Am = 0. The set of solutions
form a monoid (S,0,+). Since the pointwise ordering ≤ is a well quasi order on Nk, the
set S must be generated by a finite set of nontrivial minimal solutions. This finite set is
called the Hilbert base of E , denoted by H(E). The following important result is proved by
Pottier [21], in which r is the rank of A.

▶ Lemma 3 (Pottier). ∥m∥1 ≤ (1 + k·∥A∥1)r for every m ∈ H(E).

Let r ∈ Zk. Nonnegative integer solutions to equation system

Ax = r (2)

can be derived from the Hilbert base of the homogeneous equation system Ax − x′r = 0.
Let S=r be the finite set of the minimal solutions to Ax − x′r = 0 with x′ = 1, and S=0 be
the finite set of the minimal solutions to Ax − x′r = 0 with x′ = 0. A solution to (2) is of
the form

m +
∑

i∈[|S=0|]

kimi,
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where m ∈ S=r, mi ∈ S=0 and ki is a natural number for each i ∈ [|S=0|]. The following is
an immediate consequence of Lemma 3.

▶ Corollary 4. ∥m∥1 ≤ (1 + k·∥A∥1 + ∥r∥1)r+1 for all m ∈ S=r ∪ S=0.

The size of (1) can be defined by mk log(∥A∥1), and the size of (2) by mk log(∥A∥1)+∥r∥1.
The size of (1+k·∥A∥1 +∥r∥1)r+1 is polynomial. Thus |S=r| and |S=0| are bounded by some
exponential functions. In polynomial space a nondeterministic algorithm can guess a solution
and check if it is minimal, hence the following.

▶ Corollary 5. Both S=r and S=0 can be produced in poly(n) space.

2.3 Vector Addition Systems with States
By a digraph we mean a finite directed graph in which multi-edges and self loops are admitted.
A d-dimensional vector addition system with states, or d-VASS, is a labeled digraph G =
(Q,T, qin, qout) where Q is the set of vertices and T is the set of edges. The edges are labeled
by elements of Zd, and the labels are called displacements. A state is identified to a vertex
and a transition is identified to a labeled edge. We write o, p, q for states, t and its decorated
versions for edges. A transition from p to q labeled t is denoted by (p, t, q) and p

t−→ q.
Two special states are identified, an input state qin and an output state qout. We sometimes
abbreviate (Q,T, qin, qout) to (Q,T ) when the input and the output states are not to be
referred.

A path π from p0 to qn of G = (Q,T ) is a sequence (p0,a0, q0), . . . , (pn,an, qn) of trans-
itions such that pi = qi−1 for all i ∈ [n]. The displacement ∆(π) of π is

∑
i∈[n]0

ai.
If p = p0 = qn, we call π a cycle of G on p. In the rest of the paper we refer to
G = (Q,T, pin, qout) either as a graph or as a VASS. Define

∥T∥ =
∑

p
t−→q∈T

∥t∥1, (3)

max ∥T∥ = max
{

∥t∥1 | p t−→ q ∈ T
}
. (4)

The input size |G| of a VASS G = (Q,T, p, q) is defined as follows: |G| def= |Q| + ∥T∥, where
|Q| is the size of Q. A Parikh image for G = (Q,T ) is a vector in NT . We will write ϕ, φ, ψ
for Parikh images. The displacement ∆(ψ) is defined by

∑
t=(p,t,q)∈T ψ(t)·t. For a path π

in G, we define ℘(π) as the Parikh image of π.
Given a space M, a configuration in M for the d-VASSG = (Q,T ) is a pair (p,m) ∈ Q×M,

often abbreviated to p(m), where p is the state of the configuration and m is the location
of the configuration. For t = (p,a, q), we write p(m) t−→M q(n) whenever n = m + a
and m,n ∈ M. Given a path π = t1 . . . tn from p to q, we say that π is a run in M,
written p(m) π−→M q(n), if there exist configurations p1(m1), . . . , pn−1(mn−1) such that
p(m) t1−→M p1(m1) t2−→M · · · tn−1−−−→M pn−1(mn−1) tn−→M q(n). We write

p(m) G−→M q(n)

for the existence of a run p(m) π−→M q(n) in G. We say that π is a walk if it is a run in Nd.
When talking about walks, we often omit the subscript Nd and will assume that m,n ∈ Nd.
The reachability problem can be formally stated as follows:

Given a d-VASS G = (Q,T, p, q) and two locations m,n ∈ Nd, is p(m) G−→ q(n)?
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p q

p′ q′

t1 = (0,−1,−2)

t2 = (1, 1, 0)

t3 = (0, 1, 2)

t′1 = (−1,−2)

t′2 = (1, 0)

t′3 = (1, 2)

3-VASS G

2-VASS Gyz

Figure 1 An Example of an effectively 2-dimensional 3-VASS

For an edge t ∈ T , let VG(t) be the vector space VG(t) ⊆ Qd spanned by the displacements
of the cycles that contain t. Let VG be the vector space spanned by the displacements of all
cycles in G. Let nG be dimVG, which is the dimension of VG. We say that G is effectively
nG-dimensional.

▶ Example 6. Consider the 3-VASS G presented in Figure 1. It contains two states p, q
and three transitions t1, t2, t3. The space VG is spanned by the displacements of the cycles
(1, 0,−2), (0, 1, 2). So G is an effectively 2-dimensional 3-VASS G. It is the hyperplane
defined by the equation 2x− 2y + z = 0.

In this paper we pay special attention to the effectively 2-dimensional 3-VASSes. In such
a VASS all configurations of the form p(v) reachable from p(u) lie in a hyperplane. This
suggests to investigate the relationship between the effectively 2-dimensional 3-VASSes and
the 2-VASSes. We will show in Section 3.2 that walks in an effectively 2-dimensional 3-VASS
has the same linear path scheme property as the walks in a 2-VASS.

We will find it necessary to talk about which part of the d-dimensional space a particular
vector m is in. Let #1,#2, . . . ,#d ∈ {≥,≤}. The zone Z(#1,#2,...,#d) is defined the equival-
ence: m ∈ Z(#1,#2,...,#d) if and only if m(1)#10, m(2)#20, . . . , and m(d)#d0. For instance
the quadrant N× (−N) is denoted by Z(≥,≤), and the octant N3 is denoted as Z(≥,≥,≥). For
a d-dimensional vector o, write Zo for the zone in which o lies.

3 Effectively 2-Dimensional 3-VASS

It has been known for some time that walks in 2-VASS can be described by linear path
schemes [1]. We will point out in this section a non-surprising generalization of this res-
ult, that is all walks in an effectively 2-dimensional 3-VASS are describable by linear path
schemes. We review in Section 3.1 the characterization of walks in terms of linear path
schemes due to Blondin et al [1], and carry out the generalization in Section 3.2. We fix a
VASS G = (Q,T, p, q) throughout the section.
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3.1 Linear Path Scheme
Suppose G = (Q,T ) is a d-dimensional VASS. A linear path scheme (from p to q) is a regular
expression of the form ρ = α0β

∗
1α1 · · ·β∗

nαn, where α1, . . . , αn are paths in G and β1, . . . , βn
are cycles in G. The length |ρ| of ρ is defined by |α0β1α1 · · ·βnαn|. For two locations m,n,

we write p(m) ρ−→ q(n) if there exist e1, . . . en ∈ N such that p(m)
α0β

e1
1 ...βen

n αn−−−−−−−−−→ q(n) is a
walk. Intuitively ρ defines a walk pattern dominated by the circular walks β1, . . . , βn. For
every c ∈ N, let Lc(G) be the set of the linear path schemes whose length is bounded
by (|Q| + ∥T∥)c. We are particularly interested in the linear path schemes in which the
displacements of all cycles are in Z(#1,#2,...,#d).

▶ Definition 7. Suppose G = (Q,T ) is a VASS. A linear path scheme ρ = α0β
∗
1α1 · · ·β∗

nαn
is zigzag free in Z(#1,#2,...,#d) if ∆(β1), . . . ,∆(βn) ∈ Z(#1,#2,...,#d).

A linear path scheme ρ is zigzag free if it is zigzag free in some Z(#1,#2,...,#d). To shed
more light on the zigzag free property, define the following in terms of the constants in (3)
and (4).

D def= max ∥T∥·(|Q| + ∥T∥)c, (5)

D def= [2D,∞). (6)

The number D depends only on G. If a path starts from a configuration p(m) in D3 and
is of length bounded by (|Q| + ∥T∥)c, then it must be completely in the first octant. Now
suppose m,n ∈ Dd, and that α0β

∗
1α1 · · ·β∗

nαn ∈ Lc(G) is a linear path scheme that is zigzag
free in Zn−m. One has the property stated in the next lemma.

▶ Lemma 8. If π = α0β
e1
1 α1 · · ·βen

n αn is a path from p(m) to q(n), then p(m) π−→ q(n).

Proof. Recall that 1 is the vector whose entries are all 1. It follows from the inequality
m ≥ 2D1 and the definition of D that D1 ≤ m + ∆(α1) + . . . + ∆(αi) for every i ∈
[n]. By the zigzag free property of β1, . . . , βn, one derives that for every i ∈ [n], the
inequality m + ∆(α0β

e1
1 α1 · · ·βei

i ) ≥ D1 holds. By the length bound on β1, . . . , βn, the
path α0β

e1
1 α1 · · ·βei

i , starting from m, lies completely in Z(≥,≥,...,≥). ◀

The following proposition and its corollary, due to Blondin et al [1], reveal the importance
of the zigzag free linear path schemes to the 2-VASS reachability problem.

▶ Proposition 9. Suppose G = (Q,T ) is a 2-dimensional VASS. There exists a constant c
depending on G such that, for all m,n ∈ D2, the following statements are valid.
1. If q(m) →N2 q(n), then there exists a linear path scheme ρ ∈ Lc(G) zigzag free in Zn−m

with at most two cycles such that q(m) ρ−→ q(n).
2. If p(m) →D2 q(n), then there exists a linear path scheme ρ ∈ Lc(G) with at most 2|Q|

cycles such that p(m) ρ−→ q(n).

The interested reader is advised to consult [1] for the long proof of Proposition 9. It is
worth emphasizing that in the first statement of Proposition 9 the vector n−m can be in any
one of the four quadrants. The locations m,n can be far away. If p(m) G−→ q(n) is captured
by p(m) α0β

∗
1α1β

∗
1α2−−−−−−−−→ q(n), the role of the transitions α0, α1, α2 is to adjust positions, it

takes a linear combination of the circular walks β1, β2 to take us from p(m) to q(n).
With the help of this proposition a close relationship between the walks in 2-dimensional

VASSes and the zigzag free linear path schemes can be established as in the following corol-
lary.
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▶ Corollary 10. Suppose G = (Q,T ) is a 2-dimensional VASS. There exists a constant c
depending on G such that, for all m,n ∈ N2, there is a walk p(m) G−→ q(n) if and only if
p(m) ρ−→ q(n) for some ρ ∈ Lc(G).

In Section 3.2 we will prove a generalization of Corollary 10. We will say that the walk
p(m) G−→ q(n) is captured by a linear path scheme ρ ∈ Lc(G) if p(m) ρ−→ q(n). Notice that
there are at most |T |(|Q|+∥T∥)c linear path schemes in Lc(G), and that there are infinitely
many pairs of configuration p(m), q(n) such that p(m) G−→ q(n). No matter how apart m,n
are, a walk p(m) G−→ q(n) is captured by some ρ whose length is independent of m,n.

A distinguished feature of the linear path schemes is that they do not contain any nested
cycles. In literature this is called the flatness property. The flatness allows one to enforce the
nonnegativity condition on the linear path schemes by linear (in)equations. In the following
definition x, ϕ,y,

{
z1
k,l

}
l∈[|αk|]

,
{

z2
k,l

}
l∈[|βk|]

,
{

z3
k,l

}
l∈[|βk|]

are vectors of variables.

▶ Definition 11. Let ρ = α0β
∗
1α1β

∗
2 · · ·β∗

nαn ∈ Lc(G) be in a d-dimensional VASS G. The
linear path scheme system (LPS system) Eρ for x,y ∈ Nd consists of the following equations.

x +
n∑
i=0

∆(αi) +
n∑
i=1

ϕ(βi)·∆(βi) = y, (7)

x +
k∑
i=1

(∆(αi−1) + ϕ(βi)∆(βi)) + ∆(αk[1, . . . , l]) = z1
k,l, (8)

x +
k∑
i=1

(∆(αi−1) + ϕ(βi)∆(βi)) + ∆(αk) + ∆(βk+1[1, . . . , l]) = z2
k+1,l, (9)

x +
k+1∑
i=1

(∆(αi−1) + ϕ(βi)∆(βi)) − ∆(βk+1[l, . . . , |βk+1|]) = z3
k+1,l. (10)

In the above definition 0 ≤ k ≤ n and 0 ≤ l ≤ |αk| in (8), 0 ≤ k ≤ n− 1 and 1 ≤ l ≤ |βk+1|
in (9) and (10). To check if a path of the form α0β

e1

1 α1β
e2
2 . . . βen

n αn is a walk from p(m) to
q(n), one only has to verify the following three conditions:

The displacement of the path is n − m. This is equation (7).
For every prefix α′

k of αk, α0β
e1

1 α1β
e2
2 . . . β

ek−1
k−1 α

′
k is a walk. This is equation (8).

For every cycle βk, both the paths throughout the first lap and the last lap are in the
first octant. This is the equations (9) and (10).

We will write more briefly y = Eρ(x) for Eρ. Suppose f is a solution to y = Eρ(x). We write
for example f(x) for the vector assigned to x by the solution f .

The homogeneous LPS system E 0
ρ is defined by the following equations.

x0 +
n∑
i=1

ϕ0(βi)∆(βi) = y0, (11)

x0 +
k∑
i=1

ϕ0(βi)∆(βi) = z0,1
k,l , (12)

x0 +
k∑
i=1

ϕ0(βi)∆(βi) = z0,2
k+1,l, (13)

x0 +
k+1∑
i=1

ϕ0(βi)∆(βi) = z0,3
k+1,l. (14)
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Again we write more briefly y0 = E 0
ρ (x0) for E 0

ρ . Let f0 be a solution to y0 = E 0
ρ (x0). The

summation f + hf0 is a solution to Eρ for all h ∈ N.

▶ Proposition 12. Every linear path scheme ρ is characterized by a system Eρ of linear
Diophantine equations in the sense that Eρ has a solution if and only if p(m) ρ−→ q(n).

Proof. Suppose ρ = α0β
∗
1α1 · · ·β∗

nαn is a linear path scheme of G = (Q,T, p, q) that starts
with p and ends with q. Suppose f is a solution to y = Eρ(x) and m = f(x) and n = f(y).
We claim that the path defined by a solution f is a walk from p(m) to q(n). Let π =
α0β

f(ϕ(β1))
1 α1 · · ·βf(ϕ(βn))

n αn. We only need to prove by induction that no configurations in

the path fall outside Nd. This is done by induction. Suppose p(m)
α0β

f(ϕ(β1))
1 α1···βf(ϕ(βk))

k−−−−−−−−−−−−−−−−→
pk(mk) holds for k. There are two cases to consider.

Since the equation (8) holds, one has, for all l ∈ [|αk|], the following

mk+∆(αk[1, . . . , l]) = m+
k+1∑
i=1

(∆(αi−1)+f(ϕ(βi))∆(βi))+∆(αk[1, . . . , l]) = f(z1
k,l) ≥ 0.

So the run of αk that starts with pk(mk) never drops below 0.
Let the configuration after αk be p′

k(m′
k), the equations (9) and (10) show that, for all

l ∈ [|βk+1|], one has the following inequations.

m′
k + ∆(βk+1[1, . . . , l]) = f(z2

k+1,l) ≥ 0,

m′
k + (f(ϕ(βk+1)) − 1)∆(βk+1) + ∆(βk+1[1, . . . , l]) = f(z3

k+1,l) ≥ 0.

The first shows that p′
k(m′

k) can perform the first cycle βk+1 and the second guarantees
that p′

k(m′
k + (f(ϕ(βk+1)) − 1)∆(βk+1)) can do the last cycle βk+1. By monotonicity

pk(m′
k) can perform the cycle βk+1 for f(ϕ(βk+1)) times.

The implication in the other direction is clear. ◀

3.2 Walks in Effectively 2-Dimensional 3-VASSes
Let G be an effectively 2-dimensional 3-VASS. We will show that walks between two config-
urations in G can be captured by linear path schemes. The proof follows that of Corollary 10
of Blondin [1]. To start with we prove that regional walks between two configurations can
be captured by linear path schemes. We will establish two facts.
1. For large polynomial C(n) every walk with both the start location and the final location

in [C(|G|),+∞)3 can be captured by a linear path scheme. This is Proposition 13.
2. For every polynomial C(n) > 0 every walk with both the start location and the final

location bounded by C(|G|) in at least one dimension can be captured by a linear path
scheme. This is Lemma 15 and lemma 16.

Now fix some large polynomial C(n). A walk in the first octant generally passes through
both regions. We will show that the walk can be decomposed into a polynomial number of
local walks, each of them falls in either [C(|G|),+∞)3 or [C(|G|)]0×N2 ∪ N×[C(|G|)]0×N ∪
N2×[C(|G|)]0. So the whole walk can be captured by a linear path scheme with a polynomial
number of cycles. We will actually let the two regions to overlap so that the start locations
and the final locations of the local walks fall in the overlapping space.

The following is a generation of Proposition 9.

▶ Proposition 13. Suppose G = (Q,T ) is an effectively 2-dimensional 3-VASS. There exists
a constant c depending on G such that, for all m,n ∈ D3, the following statements are valid.
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1. If q(m) →N3 q(n), then there exists a linear path scheme ρ ∈ Lc(G) zigzag free in Zn−m
with at most two cycles such that q(m) ρ−→ q(n).

2. If p(m) →D3 q(n), then there exists a linear path scheme ρ ∈ Lc(G) with at most 2|Q|
cycles such that p(m) ρ−→ q(n).

Proposition 13 is proved by projecting an effectively 2-dimensional 3-VASS onto an axis
plane. By Proposition 9 and Corollary 10 a walk in a 2-VASS can be captured by a linear
path scheme. We hope to be able to restore the 3-dimensional linear path scheme from such
a 2-dimensional linear path scheme in the projected 2-VASS. The question is onto which axis
plane should the hyperplane be projected. To shed more light on the question, let’s take a
look at an example. Consider a 3-VASS with single state p and two transitions t1 = (1, 0,−1)
and t2 = (0, 1, 1). We ask if p(150, 200, 100) is reachable from p(50, 50, 50). If we project the
3-VASS onto the first two dimensions, we can simply get a linear path scheme (t′1)100(t′2)150,
where t′1 = (1, 0) and t′2 = (0, 1), that captures a walk from p(50, 50) to p(150, 200). However
(t1)100(t2)150 is not a walk in the 3-VASS because the values in the third dimension goes
into the negative somewhere in the path. Instead of projecting onto the first and the second
entries, let’s project a 3-tuple onto its first and third entries. It is not difficult to see that
all walks from p(50, 50) to p(150, 100) are captured by linear path schemes. For example
(t′′

1t′′
2)100 (t′′

2)50 is one such linear path scheme, where t′′1 = (1,−1) and t′′2 = (0, 1). In the
latter case the sign of the values in the first and the third dimensions determine the sign of
the second entry. As long as the first and the third entries are non-negative, so is the second
entry. The example should help understand the next lemma and its proof.

▶ Lemma 14. Let V ⊆ Q3 be a 2-dimensional subspace. If the vector space spanned by
V ∩Z(#1,#2,#3) is V , then there exist distinct i, j ∈ [3] such that m ∈ Z(#1,#2,#3) whenever
m ∈ V , m(i)#i0 and m(j)#j0.

Proof. Suppose V ∩Z(#1,#2,#3) is proper in the sense that V ∩Z(#1,#2,#3) spans V . Suppose
there are a ̸= 0, b ̸= 0 and c ̸= 0 such that V is the hyperplane defined by the equation

ax+ by + cz = 0. (15)

The intersection of this hyperplane with the hyperplane x = 0, respectively the hyperplane
y = 0, and the hyperplane z = 0 are respectively the following lines:

by + cz = 0 on the YOZ axis plane, (16)
ax+ cz = 0 on the XOZ axis plane, (17)
ax+ by = 0 on the XOY axis plane.

Since the intersection V ∩ Z(#1,#2,#3) is proper, the hyperplane (15) must intersect with
two axis planes in the zone Z(#1,#2,#3). Without loss of generality assume that V intersects
with (16) and (17) in the zone Z(#1,#2,#3). Let

Iyz =
(

0, 1#2 ,−1#2 ·b
c

)
, Ixz =

(
1#1 , 0,−1#1 ·a

c

)
(18)

be the direction vectors with one unit length entry, where 1#1 , 1#2 are defined as follows:

1#1 =
{

1, if #1 is ≥,
−1, if #1 is ≤, respectively, 1#2 =

{
1, if #2 is ≥,
−1, if #2 is ≤,



XX:10 Reachability in 3-VASS is in Tower

Notice that by definition
(
−1#2 · cb

)
#30 and

(
−1#1 · ca

)
#30. Then for all m ∈ V , the in-

equalities m(1)#10 and m(3)#30 imply m(2)#20. This is because m can be represented
as dIxy + d′Iyz for some nonnegative d, d′ ∈ Q. But then

m = dIxy + d′Iyz =
(

1#1 ·d′, 1#2 ·d,−d·1#2 ·c
b

− d′·1#1 · c
a

)
∈ Z(#1,#2,#3). (19)

If in (15) the conditions a ̸= 0, b ̸= 0 and c ̸= 0 are not satisfied, the proof is easier. ◀

Lemma 14 is really about the promotion of the zigzag free property. Suppose V is a
2-dimensional subspace, and i = 1, j = 2. Suppose β is a 3-dimensional cycle such that
∆(β) ∈ V , ∆(β)(1)#10 and ∆(β)(2)#20, meaning that the projection of the cycle β onto
the XOY plane is zigzag free in the quadrant (#1,#2). Then β(3)#30 can be interpreted
as saying that β is zigzag free in the octant Z(#1,#2,#3). With this observation we are able
to prove Proposition 13.

Proof of Proposition 13. Suppose the dimension of the space spanned by VG ∩ Zn−m is 2.
The situation is trivial if the dimension is strictly less than 2. To prove the first proposi-
tion, let Zn−m = (#1,#2,#3). By Lemma 14 we may assume without loss of generality
that for all w ∈ VG, w(3)#30 whenever w(1)#10 and w(2)#20. Let VG be spanned by
(1, 0, a), (0, 1, b) for some a, b ∈ Q. Let f : Z3 → Z2 be the projection function defined by
f((x1, x2, x3)) = (x1, x2). Using the linear equality that defines the subspace VG, it is easy
to define the inverse function f−1. The 2-VASS Gxy = (Qxy, Txy) is defined by

Qxy = Q, and
Txy = {(p, f(a), q) | (p,a, q) ∈ T}.

Let Dxy and Dxy be defined like in (5) and (6) respectively for the 2-VASS Gxy. Because
Dxy ≤ D, we may use D and D defined for G instead of Dxy and Dxy in the following
argument. Since q(m) π−→N3 q(n) in G for some path π, we have q(f(m)) π′

−→N2 q(f(n))
in Gxy obtained by projection. We may write π′ = f(π) by extending f to the projection
function that maps T ∗ onto T ∗

xy in the obvious manner. So we may write q(f(m)) f(π)−−−→N2

q(f(n)). Since f(m), f(n) ∈ D2, according to Proposition 9, there exists a zigzag free linear
path scheme ρxy = α0β

∗
1α1β

∗
2α2 ∈ Lc(G) such that q(f(m)) ρxy−−→ q(f(n)). The zigzag-free

property ensures that both ∆(β1) and ∆(β2) belong to the quadrant (#1,#2). By Lemma 14
the displacements of the cycles f−1(β1), f−1(β2) are zigzag free in the octant Zn−m.

Let πxy = α0β
e1
1 α1β

e2
2 α2 be such that q(f(m)) πxy−−→ q(f(n)). Evidently ∆(πxy) =

∆(π′) = ∆(f(π)) = f(∆(π)). We also need to prove ∆(f−1(πxy)) = ∆(π), which boils
down to checking the equality in the third dimension. This is essentially due to the fact
that the values in the third entry are linear combinations of the values in the first and the
second entries. If m(3) = f−1((m(1),m(2))), then

∆(f−1(πxy))(3) = a∆(πxy)(1) + b∆(πxy)(2) = a∆(π)(1) + b∆(π)(2) = ∆(π)(3).

If m(3) ̸= f−1((m(1),m(2))), the shift m(3)−f−1((m(1),m(2))) is maintained throughout
f−1(πxy). Because m ∈ D, the shift does not cause the path to go out of the first octant.

We still need to prove that q(m) f−1(πxy)−−−−−−→ q(n), that is the path is in the first octant. But
this is just Lemma 8. The proof of the first proposition is completed.

The second proposition is proved by making good use of the first proposition. Suppose
p(m) →D3 q(n). There exists a walk

p(m) α0−→ q1(m1) β1−→ q1(m′
1) α1−→ · · · qk(mk) βk−→ qk(m′

k) αk+1−−−→ q(n)

such that
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mi,m′
i ∈ D3, and for all i ∈ [k],

|αi| ≤ |Q|, qi(mi) is the first configuration in which qi appears and qi(m′
i) is the last

configuration in which qi appears.
By construction k ≤ |Q|. Applying the first proposition, each βi can be captured by a linear
path scheme αi,0β∗

i,1αi,1β
∗
i,2αi,2. Thus the walk can be captured by a linear path scheme ρ

where |ρ| ≤ (|Q| + ∥T∥)O(1), and ρ has no more than 2|Q| cycles. ◀

Let’s demonstrate the combined power of Lemma 14 and Proposition 13 by an example.
Consider the 3-VASS defined in Figure 1. We look for a linear path scheme that captures
a walk from p(u) to p(v), where u = (22, 22, 22) and v = (42, 42, 22). The intersection
VG ∩ Zv−u is above the Y OZ plane. Therefore x(2) > 0 and x(3) < 0 imply x(1) > 0
for every x ∈ VG. We obtain the 2-VASS Gyz by projecting G onto the Y OZ plane. The
projection function is f(x) = (x(2),x(3)). Let t′

1, t′
2, t′

3 be the projections of t1, t2, t3
respectively. The following path π is from p(f(u)) to q(f(v)):

p(22, 22) t′
1−→ q(21, 20) (t′

3)20

−−−−→ q(41, 60) t′
2−→ p(42, 60) (t′

1t′
2)19

−−−−−→ p(42, 22).

The displacement of t′
3 and t′

1t′
2 are zigzag-free. Consequently the displacement of t3 and

t1t2 are zigzag-free. It is clear that p(m) can engage in the walk t1(t3)t2(t1t2). Therefore
the following is a walk.

p(22, 22, 22) t1−→ q(22, 21, 20) (t3)20

−−−−→ q(22, 41, 60) t2−→ p(23, 42, 60) (t1t2)19

−−−−−→ p(42, 42, 22).

Next we consider the walks that are close to an axis plane. We shall repeat an argument
of [1] to the effectively 2-dimensional 3-VASS. Set I1 = [2D ]0 ×N2, I2 = N× [2D ]0 ×N, and
I3 = N2 × [2D ]0. Let ID stand for one of I1, I2, I3. Consider a walk in ID . Values in the
bounded dimension are encoded into the states as it were. A state becomes a pair (q, t) with
q ∈ Q and t ∈ [2D ]0. This operation transforms the effectively 2-dimensional 3-VASS to a
2-VASS, the reachability of the latter can be characterized by linear path schemes according
to Proposition 9, hence the following lemma.

▶ Lemma 15. Suppose m,n ∈ ID . Then p(m) →ID q(n) if and only if there exists a linear
path scheme ρ with size |ρ| ≤ (|Q| + ∥T∥)O(1) such that p(m) ρ−→ q(n).

Proof. Consider the case that ID = [2D ]0 × N2. Define a 2-VASS Ĝ = (Q̂, T̂ ) as follows:

Q̂
def= {qi | q ∈ Q, i ∈ [2D ]0} ,

T̂
def=

{(
pi, (a(2),a(3)), qi+a(1)

)
| (p,a, q) ∈ T and i, i+ a(1) ∈ [2D ]0

}
.

A simple induction shows that for every pair m,n ∈ ID , the following equivalence is valid.

“p(m) →ID q(n) in G” iff “pm(1)((m(2),m(3))) →N2 qn(1)((n(2),n(3))) in Ĝ”. (20)

By Proposition 9 there exists a linear path scheme ρ̂ with size |ρ̂| ≤ (|Q̂| + ∥T̂∥)O(1) such

that pm(1)((m(2),m(3))) ρ̂−→ qn(1)((n(2),n(3))) in Ĝ. Evidently we can transfer ρ̂ back to a
linear path scheme in G whose length is bounded by (|Q| + ∥T∥)O(1). ◀

Having proved Lemma 15, we consider next the situation where a walk may go from one
of the regions I1, I2, I3 to another. Let LD be the union I1 ∪ I2 ∪ I3. The following lemma
shows that the walks in LD can also be captured by linear path schemes.
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▶ Lemma 16. Suppose G is an effectively 2-dimensional 3-VASS and m,n ∈ LD . Then
p(m) →LD q(n) if and only if there exists a linear path scheme ρ with size |ρ| ≤ (|Q| +
∥T∥)O(1) such that p(m) ρ−→ q(n).

Proof. If the vector space VG is parallel to one of the coordinate planes, say the XOY -plane,
then the effectively 2-dimensional 3-VASS is essentially a 2-VASS. We are done by applying
Proposition 13. In the rest of the proof we assume that VG is not parallel to any coordinate
plane. Let

Jij
def= Ii ∩ Ij , where i < j.

These are the regions of crossing points. A walk π in LD from p(m) to q(n) may pass many
crossing points. It is generally of the following form

p(m) π1−→B1 p1(m1) π2−→B2 p2(m2) π3−→B3 · · · πk−→Bk
pk(mk) πk+1−−−→Bk+1 q(n), (21)

where
Bi ∈ {I1, I2, I3} all i ∈ [k + 1],
Bi+1 ̸= Bi for all i ∈ [k], and
mi ∈ {J12, J13, J23} for all i ∈ [k].

If k ≤ 3·|Q|·(2D + 1)2, then since by Lemma 15 each πj can be captured by a linear path
scheme of length bounded by (|Q| + ∥T∥)O(1), the path π itself is then captured by a linear
path scheme of length bounded by (|Q| + ∥T∥)O(1). Next suppose k > 3·|Q|·(2D + 1)2. By
the pigeon hole principle there must exist i < j such that pi = pj and at least two of
the equalities mi(1) = mj(1), mi(2) = mj(2), mi(3) = mj(3) are valid. Without loss of
generality assume that mi(1) = mj(1) and mi(2) = mj(2). The existence of the cycle
implies that for some a,

a def= mj − mi = (0, 0, a) ∈ VG. (22)

If also |{i | mi ∈ J13}| > |Q|·(2D + 1)2, then by the same argument there would be some
circular walk whose displacement is of the form (0, b, 0) ∈ VG with b ̸= 0. This is a contradic-
tion because the existence of a and (0, b, 0) would imply that VG is parallel to the coordinate
plane Y OZ. The same line of reasoning applies to the set {i | mi ∈ J23} as well. Therefore

|{i | mi ∈ J13}| ≤ |Q|·(2D + 1)2, (23)
|{i | mi ∈ J23}| ≤ |Q|·(2D + 1)2. (24)

It follows from the inequalities (23) and (24) that |{i | Bi = I3}| ≤ |Q|·(2D + 1)2. Let the
set {i | Bi = I3} be {i1, . . . , il} such that i1 < . . . < il. Assume that π does not contain any
sub-walk from a configuration to itself. By setting p1(o1) = p(m) and p′

il+1(o′
il+1) = q(n),

the walk π can be rearranged into the following form:

p1(o1) π′
1−→I1∪I2 p

′
1(o′

1)
πi1−−→I3 p2(o2) π′

2−→I1∪I2 · · ·
πil−−→I3 pil(oil)

π′
l+1−−−→I1∪I2 p

′
il+1

(o′
il+1

). (25)

We need to bound |π′
1|, . . . , |π′

l+1|. Suppose s ∈ [l+ 1] and that π′
s lies completely in I1. Let

D ′ def= |Q|·(2D + 1)·∥T∥.

We prove that π′
s stays completely in the region

K def= [2D ]0 × [max{0,os(2) − D ′},os(2) + D ′] × N.
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Suppose

ps(os)
ϖ−→I1 p

′(o′) ϖ′

−−→I1 p
′′(o′′) (26)

is an initial sequence of π′
s such that ps(os)

ϖ−→I1 p
′(o′) only passes the locations in K and

o′′(2) > os(2) + D ′. Remove from (26) sub-paths of the form p(o) π−→I1 p(o′) such that
o(2) = o′(2). In the path so obtained there must be a sub-path p(o) π−→I1 p(o′) such that
o(1) = o′(1). Then o−o′ is some (0, b, c) such that b ̸= 0. Together with the vector a in (22)
it implies that VG is parallel to the coordinate plane Y OZ, contradicting to the assumption.
For the same reason o′′(2) < os(2) − D ′ is impossible. We conclude that π′

s never goes
outside K. By the same argument one shows that if π′

s lies completely in I2, it must stay
within the region [max{0,os(1) − D ′},os(1) + D ′] × [2D ]0 ×N. It is now easy to see that if
π′
s goes from I1 to I2, or vice versa, then it must lie in the region

L12
def= ([2D ]0 × [D ′]0 × N) ∪ ([D ′]0 × [2D ]0 × N) .

Based on the above discussion, the walk π can be segmented in the following form:

p(m) π′′
1−−→C1 p1(m′

1) π′′
2−−→C2 p2(m′

2) π′′
3−−→C3 · · ·

π′′
k′−1−−−−→Ck′−1 pk′−1(mk′−1)

π′′
k′−−→Ck′ q(n), (27)

where
Ci ∈ {I1, I2, I3,L12} all i ∈ [k′ + 1],
Ci+1 ̸= Ci for all i ∈ [k′], and
mi ∈ {J13, J23, J12} for all i ∈ [k′].

Notice that by (23) and (24), the number of the occurrences of I3 is at most |Q|·(2D + 1)2.
Consequently k′ ≤ 2·|Q|·(2D + 1)2. By Lemma 15, each sub-walk πj in I1, I2, I3 can be
captured by a linear path scheme of length bounded by (|Q| + ∥T∥)O(1), noticing that D ′ is
also (|Q| + ∥T∥)O(1). The region L12 is essentially 1-dimensional, so it can be captured by
a linear path scheme of length bounded by (|Q| + ∥T∥)O(1). Consequently the whole walk
π can be captured by a concatenation of at most 2·|Q|·(2D + 1)2 linear path schemes, each
bounded by (|Q| + ∥T∥)O(1) in length. The proof is complete. ◀

We have proved that a walk in an effectively 2-dimensional 3-VASS can be converted to
a linear path scheme if either (i) the first location and the last location are high up in the
first octant or (ii) one dimension is restricted. For a general walk we divide the first octant
into two regions:

D, and
L def= [2D + 2T ]0 ×N2 ∪ N× [2D + 2T ]0 ×N ∪ N2 × [2D + 2T ]0, where T = max ∥T∥·|Q|.

Suppose p(m) → q(n) and consider all the configurations in the walk. Let q(mq,in) and
q(mq,out) in the walk be the first and the last configurations whose states are the same q
and whose locations are both in D ∩ L. Using this strategy, the walk can be segmented to
consecutive sub-paths of two categories:
1. circular walks from q(mq,in) to q(mq,out) for q ∈ Q and mq,in,mq,out ∈ D ∩ L, and
2. walks between the cycles.
The walks in the first category can be converted into linear path schemes by Proposition 13.
The walks in the second category are bounded by |Q| in length. They are either completely
in D or completely in L, and can be transformed into linear path schemes by Proposition 13
and respectively by a variant of Lemma 16 with [2D ]0 replaced by [2D +2T ]0. All the linear
path schemes are bounded in size by (|Q| + ∥T∥)O(1). Hence the main result of the section.
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▶ Theorem 17. Suppose G is an effectively 2-dimensional 3-VASS G. If p(m) G−→ q(n),
then there exists a linear path scheme ρ of size (|Q| + ∥T∥)O(1) such that p(m) ρ−→ q(n).

To check if there is a walk from p(m) to q(n), an algorithm only has to guess a linear
path scheme of size (|Q|+∥T∥)O(1) and check if the associated LPS system has any solution.

We are in a position to prove Theorem 2.

Proof of Theorem 2. Let G = (Q,T, p, q) be an effectively 2-dimensional 3-VASS and
p(m), q(n) be two configurations. By Theorem 17, p(m) G−→ q(n) if and only if p(m) ρ−→ q(n)
for some linear path scheme ρ with |ρ| ≤ (|Q|+∥T∥)O(1). By Proposition 12 the LPS system
n = Eρ(m) has a solution f and by Corollary 5 the size of f is (|Q| + ∥T∥)O(|Q|+∥T∥). Thus
a walk p(m) G−→ q(n) can be guessed in exponential space. ◀

4 KLMST Constructions

We recall in this section the main constructions in the KLMST method. Our account
follows [18] closely. All the results stated in this section are from [18]. We omit the proofs.
Special attention is paid to the treatment to the effectively 2-dimensional VASSes since
that is where our algorithm improves upon the KLMST algorithm in the 3-dimensional case.
Throughout the section we fix a VASS G = (Q,T, qin, qout).

4.1 KLM sequence

A d-dimensional KLM sequence is a sequence of connected VASSes. It is of the form

ξ = (u0G0v0)a1(u1G1v1)a2 · · · an(unGnvn), (28)

where
ui,vi ∈ Ndω for all i ∈ [n]0,
Gi = (Qi, Ti, pi, qi) is a d-VASS for all i ∈ [n]0, and
ai ∈ Nd is the displacement of a transition from qi−1 to pi for all i ∈ [n]. We shall call
a1, . . . ,an the connecting edges.

The component uiGivi is denoted by ξi. If Gi is the trivial VASS that contains one state and
no transition, then (ui, Gi,vi) is vacuous. For convenience the transition whose displacement
is ai is often referred to by ai. The size of ξ is 2(d+ 1)d+1(n+

∑n
i=0(∥xi∥1 + |Gi| + ∥yi∥1) +∑n

i=1 ∥ai∥1), denoted by |ξ|. A run ρ of ξ is of the form π0a1π1 · · · anπn where πi is a path
from pi to qi inside Gi. The run ρ is a witness to ξ if there exists a sequence of locations
m0,n0, . . . ,mn,nn ∈ Nd such that

mi ⊑ ui,ni ⊑ vi for all i ∈ [n]0, and
p0(m0) π0−→ q0(n0) a1−→ p1(m1) π1−→ · · · an−−→ pn(mn) πn−−→ qn(nn) is a walk.

Let Wξ be the set of the witnesses to ξ. If u0,vn ∈ Nd, a witness to ξ is also called a walk
from u0 to vn.

We see the triple uGv as an instance of the generalized reachability problem VASSd.

▶ Definition 18. A triple uGv is in VASSd if Wξ ̸= ∅.



Qizhe Yang, Yuxi Fu XX:15

The characteristic system Eξ for ξ as given in (28) is a linear Diophantine system that
provides an algebraic characterization of Wξ. Formally Eξ consists of the following equations:

yi = xi +
∑

t=(p,a,q)∈Ti

ϕi(t)·a, (29)

xj+1 = yj + aj+1, (30)

1qi
− 1pi

=
∑

t=(p,a,q)∈Ti

ϕi(t)·(1q − 1p), (31)

xi ⊑ ui, (32)
yi ⊑ vi, (33)

where i ∈ [n]0 and j ∈ [n−1]0. The variables xi respectively the variables yi are introduced
for the input locations respectively the output locations of ξi. The variables ϕi are for the
number of edges in Gi. In (31) the notation 1q for example is an indicator vector whose q-th
entry is 1 and whose other entries are 0. The equality(31) is called Euler Condition, which
guarantees the existence of a path in Gi from pi to qi whose Parikh image is ϕi. In (32)
and (33) the order relation imposes constraints on the input location and the output location.
If say ui(j) = 9, there is an equation xi(j) = 9. If ui(j) = ω, then the constraint is vacuous
for xi(j). We shall only be interested in non-negative integer solutions to Eξ. Whenever we
say “solution” we mean “non-negative integer solution”. It is clear that if Eξ is not satisfiable,
meaning that Eξ has no solution, then ξ has no witness. In the rest of the paper we only
consider KLM sequences whose characteristic systems are satisfiable. Our nondeterministic
algorithm terminates whenever it comes across an unsatisfiable KLM sequence. Satisfiability
will not be mentioned most of the time.

Let f be a solution to Eξ. We denote by f(xi) the vector assigned to xi by the solution f .
The notations f(yi) and f(ϕi) are interpreted in the same fashion. The size of f is defined by∑n

i=0(∥f(xi)∥1 + ∥f(yi)∥1 + ∥f(ϕi)∥1). Now let Vξ =
⋃
i∈[n]0

({xi(k) | k ∈ [d]} ∪ {yi(k) | k ∈
[d]} ∪ {ϕi(t) | t ∈ Ti}), which is the set of the variables of the equation system Eξ. For each
z ∈ Vξ let Sz be the set {f(z) | f is a solution to Eξ}. We say that z is unbounded if Sz is
infinite.

Suppose f , f ′ are solutions to Eξ. We say that f ′ is over f if f ≤ f ′ by the point-wise
order. If f ′ is over f , then f ′ − f is a solution to the homogeneous characteristic system E0

ξ

defined by the following equations:

y0
i = x0

i +
∑

t=(p,a,q)∈Ti

ϕ0
i (t)·a, (34)

x0
j+1 = y0

j , (35)

0 =
∑

t=(p,a,q)∈Ti

ϕ0
i (t)·(1q − 1p), (36)

x0
i (k) = 0, whenever mi[k] ̸= ω, (37)

y0
i (k) = 0, whenever ni[k] ̸= ω, (38)

where i ∈ [n]0 and j ∈ [n−1]0 and k ∈ [d]. Let V 0
ξ =

⋃
i∈[n]0

({x0
i (k) | k ∈ [d]}∪{y0

i (k) | k ∈
[d]}∪{ϕ0

i (t) | t ∈ Ti}). The size of a homogeneous solution is defined similarly. The variables
in Vξ, V

0
ξ are in 1-1 correspondence. Set

h0 =
∑

H(E0
ξ ). (39)

Clearly h0 is a solution to E0
ξ . The following lemma [18] is immediate from definition.
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▶ Lemma 19. h0(z0) > 0 if and only if z ∈ Vξ is unbounded. Moreover the sum of the
values of the bounded variables is less than |ξ||ξ|−1.

A remarkable measure on the KLM sequences was proposed by Leroux and Schmitz [18].
The ranking function r maps a VASS G onto a (d+1)-dimensional vector (rd, rd−1, . . . , r0),
where rk denotes the number of edges t in G satisfying dim VG(t) = k. The rank r(ξ)
of the KLM sequence (28) is defined by the summation r(ξ) =

∑
i∈[n] r(Gi). It has been

shown that the constructions of the KLMST algorithm strictly decrease the rank of any
KLM sequence [18], hence the termination of the KLMST algorithm. In the rest of the
section we are going to explain three constructions relevant to our algorithm for the 3-VASS
reachability problem.

4.2 Standardization
The KLMST algorithm builds on the fact that a KLM sequence can be converted to a ‘good’
one so that further treatment to the KLM sequence is smooth. A KLM sequence ξ as in (28)
is strongly connected if for every i ∈ [n]0 the graph Gi in ξi is strongly connected; it is
saturated if for every i ∈ [n]0 and every j ∈ [d], the equality ui(j) = ω, respectively the
equality vi(j) = ω, is valid if and only if xi(j), respectively yi(j), is unbounded.

▶ Definition 20. A KLM sequence ξ is standard if it is strongly connected and saturated.

If ξi = uiGivi is not saturated, one can update ui,vi using the solution h0 of Lemma 19. If
Gi is not strongly connected, one can find out the strongly connected components of Gi and
linearize as it were the strongly connected components of Gi. Notice that there may well be
several ways to linearize the strongly connected components. A nondeterministic algorithm
has to guess such a linearization. By the Euler condition a linearization of ξi = uiGivi must
be of the form

(ui,1Gi,1vi,1)ai,2(ui,2Gi,2vi,2)ai,3 . . .ai,in(ui,inGi,invi,in), (40)

where ui,1 = ui and ui,in = vi.
Using these simple manipulations one can prove the following lemma [18].

▶ Lemma 21. A set Ξ of standard KLM sequences of smaller rank can be computed from a
nonstandard ξ in exp(|ξ||ξ|) time such that Wξ =

⋃
ξ′∈Ξ Wξ′ and |ξ′| ≤ |ξ||ξ| for all ξ′ ∈ Ξ.

In [18] the standard KLM sequences are called clean KLM sequences, and Lemma 21 is
called Cleaning Lemma.

4.3 Decomposition
A KLM sequence ξ as in (28) is said to be unbounded if for every i ∈ [n]0 and every edge t of
Gi = (Qi, Ti), the set Sϕi(t) is unbounded; it is bounded otherwise. According to Lemma 19
the unboundedness is completely determined by the solution h0 to the homogeneous charac-
teristic system. Even if Gi is strongly connected, there may be some t ∈ Ti such that Sϕi(t)
is finite. One can construct the strongly connected components of the unbounded edges and
linearize these components. In this way the edge t occurs as a connecting edge ϕi(t) times.
If for example Gi is bounded, the component ξi = uiGivi can be decomposed to a KLM
sequence of the form (40). There can be many decompositions of ξi. A nondeterministic
algorithm has to guess one of them. The next lemma is also from [18].
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▶ Lemma 22. A set Ξ of KLM sequences of smaller rank can be computed from a bounded
standard ξ in exp(|ξ||ξ|) time such that Wξ =

⋃
ξ′∈Ξ Wξ′ and |ξ′| ≤ |ξ||ξ| for all ξ′ ∈ Ξ.

Lemma 22 implies that the number of VASSes in the sequence (40) is bounded by |ξ||ξ|.
The VASSes in (40) enjoy additional property. We will come back to this in Section 5.

4.4 Reduction
To make it easy for the following account, we consider runs in Ndω by imposing the additional
equality ω ± n = ω for every n ∈ Nω. For any d-dimensional ξj = ujGjvj , if pj(uj)

Gj−−→Nd
ω

pj(u′
j) and qj(v′

j)
Gj−−→Nd

ω
qj(vj) for some u′

j ,v′
j such that the following statements are valid,

then ujGjvj is pumpable; otherwise ujGjvj is nonpumpable.

For each k ∈ [d] with uj(k) ̸= ω, the strict inequality u′
j(k) > uj(k) holds. (41)

For each k ∈ [d] with vj(k) ̸= ω, the strict inequality v′
j(k) > vj(k) holds. (42)

If ξj = ujGjvj is pumpable for every i, ξ is pumpable; it is nonpumpable otherwise.
We now show how to handle ξ if it is not nonpumpable. The idea is that if ξj = ujGjvj

is nonpumpable, then there exists at least one dimension in which values in that dimension
are bounded by |ξ| throughout a walk inside ξi. As pointed out in [18], pumpability can
be seen as a form of coverability, and the latter can be verified in exp(|ξ|) time [22]. The
following is from [18], which is essentially due to [22].

▶ Lemma 23. Suppose V is a d-VASS, u0 ∈ Ndω, and c = |{i|u0(i) ∈ N}|. If there is
a run p0(u0) a1−→Nd

ω
p1(u1) a2−→Nd

ω
· · · ak−→Nd

ω
pk(uk) such that for each i ∈ [d] satisfying

u0(i) ∈ N some j ∈ [k] exists such that uj(i) > C1+cc , where C is a natural number satisfying
C ≥ |V |. Then there exists a path π such that p0(u0) π−→ p0(u) satisfying u ≥ (C − |V |)·1
and |π| < C(c+1)c+1 .

Lemma 23 is extremely useful in that it allows one to carry out dimension reduction.
Suppose ξ is nonpumpable. By definition some ξj = ujGjvj is nonpumpable. Without loss
of generality, we may assume that pj(uj) is not pumpable in some i-th dimension in the
sense that (41) fails. By Lemma 23 every run from pj(uj) to qj(vj) must fall in the region:

Bi
def= N × . . .× N︸ ︷︷ ︸

i−1 times

× [0, B] × N × . . .× N︸ ︷︷ ︸
d−i times

.

By Lemma 23 we may set B def= (2|ξ|)1+dd . It now becomes clear how to reduce the dimension
of a nonpumpable ξj . Let G−i

j =
(
Q−i
j , T−i

j

)
, where Q−i

j , T−i
j are defined as follows:

Q−i
j = {(p, g) | p ∈ Qj and g ∈ [B]0} ,

T−i
j =

{
(p, g) t−i

−→ (q, g+ t(i)) | p t−→ q ∈ Tj , g, g+ t(i) ∈ [B]0
}
.

In the above definition the notation t−i stands for the vector obtained from t by removing
the i-th entry, for example (4, 3, 2, 1)−2 = (4, 2, 1). The construction of ξ′ = u′

jG
′
jv′
j falls

into one of the three categories:
If uj(i),vj(i) ∈ N, then u′

j = uj ,v′
j = vj , G′

j = G−i
j , p′

j = (pj ,uj(i)), q′
j = (qj ,vj(i)).

If uj(i) ∈ N and vj(i) = ω, then u′
j = uj , G′

j = G−i
j , p′

j = (pj ,uj(i)), q′
j = (qj , r) for

some r ∈ [B]0, and v′
j differs from vj only in that v′

j(i) = r.
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If vj(i) ∈ N and uj(i) = ω, then v′
j = vj , G′

j = G−i
j , q′

j = (qj ,vj(i)), p′
j = (pj , r) for

some r ∈ [B]0, and u′
j differs from uj only in that u′

j(i) = r.
In the latter two cases our reduction algorithm has to make a guess about r. The nonpump-
ability of ξj = ujGjvj may also be caused by the failure of (42). This case can be treated
like in the above case by reversing the transitions of ξj = ujGjvj .

By analyzing the construction described in the above, one can prove the following
lemma [18].

▶ Lemma 24. Suppose ξ is a d-dimensional standard nonpumpable KLM sequence. A set
Ξ of KLM sequences of smaller rank can be computed from ξ in exp(|ξ|d+dd) time such that
Wξ =

⋃
ξ′∈Ξ Wξ′ and |ξ′| ≤ |ξ|d+dd for all ξ′ ∈ Ξ.

The pumpability introduced in this section is slightly different from the one in [18]. We
have not introduced the notion of rigidity. A d-dimensional VASS G may be reduced to a
(d−1)-dimensional VASS G−i by encoding the values in the i-th entry into states. If we still
want to see G−i as d-dimensional, we impose the rigidity condition on the i-dimension of G.
This is significant because future tests of pumpability of G will ignore all rigid dimensions.
In our algorithm it is never necessary to check the pumpability property of a VASS obtained
by a reduction. So rigidity is not necessary in our setting.

5 Proof of the Main Result

Section 3 and Section 4 have recalled the techniques applicable to the d-VASSes in gen-
eral and the 2-VASSes in particular, and have generalized the latter to the effectively 2-
dimensional 3-VASSes. In this section we use those techniques to construct an algorithm
for 3-VASS. The basic idea is to apply the general KLMST constructions to a 3-dimensional
KLM sequence, and then replace every effectively 2-dimensional VASSes in the sequence by
its LPS system. The idea works because the components produced by the decompositions
defined in Section 4.3 are effectively 2-dimensional and that being a linear path scheme is a
property independent of its input/output locations. The claim about the decomposition is
proved in [18]. For completeness we provide a proof outline for the claim. In the following
proof and the rest of the section we shall assume that ξ is a 3-dimensional KLM sequence
of the form (28).

▶ Lemma 25. Let G′
j be the subgraph of Gj consisting of all the unbounded edges of Gj. If

Gj′ ̸= Gj, then VG′
j

̸= VGj
.

Proof. By our definition of (28) the digraph Gj is strongly connected. Assume that VGj
=

VG′
j
. Let Φj be the Parikh image of a cycle containing every edge of the graph Gj . Then

for some k the Parikh image kΦj must be a linear combination
∑
e λeϕe of a base of VG′

j

with integer coefficients. Let h0 be defined as in (39). Then h0
j is the summation of all the

solutions to the homogeneous equation system of ξj . Let k′ be a large enough number such
that k′h0

j − ∆ (
∑
e λeϕe) ≥ 0. Now k′h0

j = kΦj + k′h0
j − ∆ (

∑
e λeϕe). So kΦj + k′h0

j −∑
e λeϕe is a homogeneous solution, implying that every edge of VGj

is unbounded. This is
a contradiction. So the assumption VGj = VG′

j
must be invalid. ◀

5.1 3-Normal KLM Sequences
To provide a more informative characterization of ξ that contains both 3-dimensional VASSes
and linear path schemes, we introduce the composite characteristic system Cξ,Λ and its
homogeneous version C 0

ξ,Λ indexed by an element Λ ∈
∏
j∈J Lc(Gj), where c is calculated
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from ξ and J ⊆ [n]0 is the set of the indexes j such that ujGjvj is effectively 2-dimensional.
Let the set of the remaining indexes be denoted by J = [n]0 \ J .

▶ Definition 26. The composite characteristic system Cξ,Λ for ξ,Λ is defined as follows:

yi = EΛi
(xi), for i ∈ J, (43)

yi = xi +
∑

t=(p,a,q)

ϕi(t)·a, for i ∈ J, (44)

1qi
− 1pi

=
∑

t=(p,a,q)∈Ti

ϕi(t)(1q − 1p), for i ∈ J, (45)

xi+1 = yi + ai+1, for i ∈ [n]0, (46)
xi ⊑ ui, for i ∈ [n]0, (47)
yi ⊑ vi, for i ∈ [n]0. (48)

The homogeneous composite characteristic system C 0
ξ,Λ for ξ,Λ is defined as follows:

y0
i = E 0

Λi
(x0
i ), for i ∈ J (49)

y0
i = x0

i +
∑

t=(p,a,q)

ϕ0
i (t)·a, for i ∈ J, (50)

0 =
∑

t=(p,a,q)∈Ti

ϕ0
i (t)(1q − 1p), for i ∈ J, (51)

x0
i [j] = 0, for ui[j] ̸= ω, for i ∈ [n]0 and j ∈ [d], (52)

y0
i [j] = 0, for vi[j] ̸= ω, for i ∈ [n]0 and j ∈ [d]. (53)

For uniformity we keep the form of the variables of Cξ,Λ as Vξ = {(xi, ϕi,yi)}i∈[n]0 . If
ukGkvk is effectively 2-dimensional, ϕi are the variables in the LPS system yi = EΛi

(xi);
otherwise ϕi is a Parikh image on Ti. By definition Cξ,∅ is the characteristic system defined
in Section 4.1. If J = {i1, . . . , ik} we also write Λ as a sequence of the linear path schemes
ρi1 . . . ρik , where ρit = Λ(it) for all t ∈ [k].

For j ∈ J , the component ξj = ujGjvj is a 3-dimensional VASS. The definitions of being
standard, unboundedness, and pumpability remain unchanged for ξj . Recall that strong con-
nectivity and pumpability are defined on the VASS Gj , and saturation and unboundedness
are defined in terms of characteristic systems. In the present situation we use the (homo-
geneous) composite characteristic system when defining the saturation and unboundedness
properties. Lemma 21, Lemma 22 and Lemma 24 remain valid.

If ξj = ujGjvj is decomposed to (uj,1Gj,1vj,1) . . . (uj,njGj,nj vj,nj ), then by Lemma 25
the VASS Gj,k is effectively 2-dimensional for all k ∈ [nj ]. If ξj = ujGjvj is reduced to
u′
jG

′
jv′
j , then by construction u′

jG
′
jv′
j is 2-dimensional. If a 2-VASS is seen as a special form

of an effectively 2-dimensional 3-VASS, the following definition comes natural.

▶ Definition 27. The 3-dimensional KLM sequence ξ is 3-normal if, for all k ∈ [n]0, either
ξk is standard, unbounded and pumpable or ξk is effectively 2-dimensional.

The 3-normal KLM sequences are good in the sense of the following theorem. Its proof
is routine.

▶ Theorem 28. If ξ is 3-normal, it has a witness bounded in size by |ξ|O(|ξ|).

Proof. Let J = {j1, . . . , jk} and Λ = (ρj1 , . . . , ρjk
) be the tuple of linear path schemes.

Consider the composite characteristic system Cξ,Λ. Let ĥ = (m̂0, ϕ̂0, n̂0) · · · (m̂n, ϕ̂n, n̂n)



XX:20 Reachability in 3-VASS is in Tower

be a minimal solution to Cξ,Λ and ĥ0 = (m̂0
0, ϕ̂

0
0, n̂0

0) · · · (m̂0
n, ϕ̂

0
n, n̂0

n) be a solution to the
homogeneous system C 0

ξ,Λ. By Lemma 19 these systems render true the following statements.
|ĥ| ≤ |ξ|O(|ξ|) and |ĥ0| ≤ |ξ|O(|ξ|).
For every j ∈ J , the followings are valid.

For every t ∈ Tj , ϕ̂0
j (t) > 0.

For every g ∈ [3], uj [g] = ω implies m̂0
j [g] > 0 and vj [g] = ω implies n̂0

j [g] > 0.
For every j ∈ J , the linear path scheme system Eρj

of ρj , formulated in Definition 11, is part
of the composite characteristic system Cξ,Λ for ξ,Λ, formulated in Definition 26. Let h̃j =
(m̃j , ϕ̃j , ñj)

def= (m̂j , ϕ̂j , n̂j) + r(m̂0
j , ϕ̂

0
j , n̂0

j ). By definition h̃j is a solution to the linear path
scheme system Eρj

, that is ñj = Eρj
(m̃j), where ρj = αj,0(βj,1)∗αj,1(βj,2)∗ · · · (βj,nj

)∗αj,nj
.

The walk πj is of the following form

pj(m̃j)
αj,0−−→ (βj,1)ϕ̃j (βj,1)

−−−−−−−−→ αj,1−−→ · · ·
(βj,nj

)
ϕ̃j (βj,nj

)

−−−−−−−−−−→
αj,nj−−−→ qj(ñj). (54)

So it is guaranteed that every path defined by a solution to the composite characteristic
system Cξ,Λ for ξ,Λ passes through ρj1 , . . . , ρjk

with all locations in N3.
We only have to consider ξk = ukGkvk with k ∈ J . We hope to prove that there exists

some r ∈ N that is not too large such that

pk(m̂k + rm̂0
k) Gk−−→ qk(n̂k + rn̂0

k). (55)

Since ξk is pumpable, there is a circular walk ψk from pk(m̂k) to some pk(m̂′) such that
m̂′(i) > m̂k(i) for all i ∈ [3] satisfying uk(i) ̸= ω. Symmetrically there is a circular walk
φk from some qk(n̂′) to qk(n̂k) such that n̂′(i) > n̂k(i) for all i ∈ [3] satisfying vk(i) ̸= ω.
Let r0 be large enough such that r0ϕ̂

0
k ≥ ℘(ψk) + ℘(φk). Let θk be the cycle defined by

r0ϕ̂
0
k − ℘(ψk) − ℘(φk), and let ϖk be a path admitted by ϕ̂k. What we have constructed is

a path ψkϖkθkφk. We can lift the unbounded entries of uk,vk as large as necessary so that
both ψk and φk are in the first octant. But the path ϖk and the cycle θk may go out of the
first octant. However we can repeat ψkθkφk for some r1 times so that both ϖk and θk stay
completely in the first octant. Let r = r0·r1. Then

pk(m̂k + rm̂0
k) (ψk)rϖk(θk)r(φk)r

−−−−−−−−−−−−→ qk(n̂k + rn̂0
k).

Let πk = (ψk)rϖk(θk)r(φk)r. Since (θk)r starts and ends in the first octant, we can choose
r1 so that (θk)r stays completely in the first octant. We have therefore proved (55). Clearly
|πk| ≤ |ĥ| + r|ĥ0|.

In summary there exists a walk π = π1 . . . πn that satisfies
∆(πj) =

∑
t∈Tj

ϕ̃j(t) for all j ∈ [n]0, and
pj(m̃j)

aj+1−−−→ qj+1(ñj+1) for all j ∈ [n− 1]0.
By Lemma 3, one may choose r satisfying r ≤ |ξ|O(|ξ|). Thus |π| < |ξ|O(|ξ|). ◀

5.2 The Algorithm 3-Klmst
We have shown that the 3-normal KLM sequences have bounded witness. In this section we
propose a nondeterministic algorithm that can transform a 3-dimensional KLM sequence ξ to
a 3-normal KLM sequence such that ξ has a witness if and only if a successful execution of the
nondeterministic algorithm produces a 3-normal KLM sequence. The idea of the algorithm
is simple. Given a 3-dimensional KLM sequence ξ as in (28), we apply the standardization,
decomposition and reduction to ξ. Whenever an effectively 2-dimensional ξk = ukGkvk is
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constructed, the algorithm guesses a linear path scheme ρ ∈ Lc(Gk), where c depends on
Gk, and substitutes ρ for ξk. Let’s continue to write ξk for the k-th component after the
replacement. The key of our approach is that no further treatment to ξk is then necessary.
The reason is that if w is a witness to ξ then, for some choice of ρ, w is also a witness to the
new KLM sequence. So reachability is preserved in the sense of nondeterministic algorithm.

The formal definition of the algorithm, named 3-Klmst, is given below, assuming that
ξ is the input of the form (28).
1. If ξ is not satisfiable, abort.
2. If ξ is not standard, turn it nondeterministically to a standard KLM sequence ξ′.
3. For each j′, if ξ′

j′ is bounded, replace it nondeterministically by a decomposition of ξ′
j′ .

4. For each j′, if ξ′
j′ is nonpumpable, replace it nondeterministically by a reduction of ξ′

j′ .
5. Replace every effectively 2-dimensional component ξ′′

j′′ of the new KLM sequence ξ′′

nondeterministically by a linear path scheme.
6. If the new KLM sequence ξ′′′ is 3-normal, output ξ′′′; otherwise apply 3-Klmst to ξ′′′.
If the input ξ has a witness w, then by Lemma 21, Lemma 22 and Lemma 24, there exists
a successful execution of 3-Klmst(ξ) that outputs a normal KLM sequence ξfinal such that
w is a witness of ξfinal. Conversely suppose ξfinal is the output of a successful execution of
3-Klmst(ξ). By Theorem 28, there is a witness w to ξfinal. By Lemma 21, Lemma 22 and
Lemma 24, w is also a witness to the input ξ. Hence the correctness of 3-Klmst.

The following lemma describes the complexity of 3-Klmst.

▶ Lemma 29. Let ξ = uGv be a 3-dimenisonal KLM sequecne, and let n be the number of
transitions in G. If Wξ ̸= ∅, then there exists a function f(x) def= xx such that if ξfinal is
the output of a successful execution of 3-Klmst(ξ), then |ξfinal| ≤ f2n(|ξ|).

Proof. Let ξ′ = (u0G0v0)a1(u1G1v1)a2 · · · ak(ukGkvk) be the KLM sequence obtained
from ξ by standardization. Clearly k ≤ n−1 and Gi is strongly connected for all i ∈ [k]0. For
each i ∈ [k]0, if ξi = uiGivi is bounded then the algorithm 3-Klmst decomposes ξi to some
KLM sequence (ui,0Gi,0vi,0)ai,1(ui,1Gi,1vi,1)ai,2 · · · ai,ik (ui,ikGi,ik vi,ik ). By Lemma 25, all
of (ui,0Gi,0vi,0), (ui,1Gi,1vi,1), · · · , (ui,ikGi,ik vi,ik ) are effectively 2-dimensional. For each
i ∈ [k]0, if ξi = uiGivi is nonpumpable then the algorithm 3-Klmst reduces ξi to some
u′
iG

′
iv′
i. By the definition of reduction, u′

iG
′
iv′
i is 2-dimensional. Since for all i ∈ [k]0

the graph Gi is strongly connected, further standardizations do not increase the number
of the VASSes that have not been replaced by linear pathe schemes. It follows that both
the number of the standardizations and the number of the decompositions/reductions are
bounded by n. By Lemma 21, Lemma 22 and Lemma 24, every time a saturation operation
or a decomposition/reduction operation is carried out, the size of the KLM sequence gets
expanded by at most a ratio of xx. We conclude that |ξfinal| ≤ f2n(|ξ|). ◀

The function f2n(x) is a tower function. With this tower function in hand, we can
design a simple-minded nondeterministic algorithm for VASS3 as follows: Upon receiving
a 3-dimensional KLM sequence ξ of the form (28), guess a 3-dimensional KLM sequence ξ′

from m0 to n0 such that m0 ⊑ u0 and n0 ⊑ v0 and |ξ′| < f2|ξ|(|ξ|); accept if ξ′ is 3-normal,
reject otherwise.

We have proved Theorem 1.

6 Conclusion

Our algorithm for the 3-VASS reachability problem applies the KLMST algorithm to convert
an input KLM sequence nondeterministically to a KLM sequence so that every VASS in the
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output KLM sequence is either 3-normal or effectively 2-dimensional. The key property
the algorithm relies on is that in the lower dimension, the length of a witness is bounded
by a function on the size of graph and is independent of the first and the last locations.
The dimension reduction methodology ought to be instructive to the complexity theoretical
study of the fixed dimension VASS reachability.

The best known lower bound for the 3-VASS reachability problem is PSPACE-hard.
There is a huge gap between the currently known lower bound and upper bound. It remains
an open problem whether reachability in 3-VASS is elementary. But it seems unlikely that
a more careful analysis of 3-Klmst can obtain such a result. Further research is necessary
to narrow the gap.
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